A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits

A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed... Two full-length cDNA clones (faEG1 and faEG3, respectively) have been isolated by screening a cDNA library representing transcripts from red strawberry fruits. Southern blot analysis of genomic DNA suggests that the strawberry endo-β-1,4-glucanases (EGases) are encoded by a multigene family. The cognate genes are predominantly expressed during the ripening process proper, although, in the case of faEG3, some expression has also been observed in large green fruits and, at low amounts, in young vegetative green tissues. In agreement with other ripening-related genes in strawberry, also the expression of faEG1 and faEG3 is down-regulated by treatment with an auxin analogue (1-naphthaleneacetic acid, NAA). Differences in temporal expression of the two EGase genes in fruits are not accompanied by differences in spatial expression. The pattern of expression and the sequence characteristics of the two polypeptides suggest that the two strawberry EGases operate in a synergistic and coordinate manner. The protein encoded by faEG1 looks like one of the usual higher-plant EGases (average molecular mass of 54 kDa), while the protein encoded by faEG3 has a greater deduced molecular mass (about 68 kDa) due to the presence of an extra peptide of about 130 amino acids at the C-terminus. Such unusual peptide shows some features also found in microbial cellulases and contains a putative cellulose-binding domain. We propose that the faEG3-encoded EGase might especially hydrolyse the xyloglucans coating the cellulose microfibrils, thus rendering the cell wall more susceptible to the subsequent hydrolytic activity of the faEG1-encoded EGase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits

Loading next page...
Kluwer Academic Publishers
Copyright © 1999 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial