A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits

A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed... Two full-length cDNA clones (faEG1 and faEG3, respectively) have been isolated by screening a cDNA library representing transcripts from red strawberry fruits. Southern blot analysis of genomic DNA suggests that the strawberry endo-β-1,4-glucanases (EGases) are encoded by a multigene family. The cognate genes are predominantly expressed during the ripening process proper, although, in the case of faEG3, some expression has also been observed in large green fruits and, at low amounts, in young vegetative green tissues. In agreement with other ripening-related genes in strawberry, also the expression of faEG1 and faEG3 is down-regulated by treatment with an auxin analogue (1-naphthaleneacetic acid, NAA). Differences in temporal expression of the two EGase genes in fruits are not accompanied by differences in spatial expression. The pattern of expression and the sequence characteristics of the two polypeptides suggest that the two strawberry EGases operate in a synergistic and coordinate manner. The protein encoded by faEG1 looks like one of the usual higher-plant EGases (average molecular mass of 54 kDa), while the protein encoded by faEG3 has a greater deduced molecular mass (about 68 kDa) due to the presence of an extra peptide of about 130 amino acids at the C-terminus. Such unusual peptide shows some features also found in microbial cellulases and contains a putative cellulose-binding domain. We propose that the faEG3-encoded EGase might especially hydrolyse the xyloglucans coating the cellulose microfibrils, thus rendering the cell wall more susceptible to the subsequent hydrolytic activity of the faEG1-encoded EGase. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A novel E-type endo-β-1,4-glucanase with a putative cellulose-binding domain is highly expressed in ripening strawberry fruits

Loading next page...
 
/lp/springer_journal/a-novel-e-type-endo-1-4-glucanase-with-a-putative-cellulose-binding-0veKIKWLeo
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006299821980
Publisher site
See Article on Publisher Site

Abstract

Two full-length cDNA clones (faEG1 and faEG3, respectively) have been isolated by screening a cDNA library representing transcripts from red strawberry fruits. Southern blot analysis of genomic DNA suggests that the strawberry endo-β-1,4-glucanases (EGases) are encoded by a multigene family. The cognate genes are predominantly expressed during the ripening process proper, although, in the case of faEG3, some expression has also been observed in large green fruits and, at low amounts, in young vegetative green tissues. In agreement with other ripening-related genes in strawberry, also the expression of faEG1 and faEG3 is down-regulated by treatment with an auxin analogue (1-naphthaleneacetic acid, NAA). Differences in temporal expression of the two EGase genes in fruits are not accompanied by differences in spatial expression. The pattern of expression and the sequence characteristics of the two polypeptides suggest that the two strawberry EGases operate in a synergistic and coordinate manner. The protein encoded by faEG1 looks like one of the usual higher-plant EGases (average molecular mass of 54 kDa), while the protein encoded by faEG3 has a greater deduced molecular mass (about 68 kDa) due to the presence of an extra peptide of about 130 amino acids at the C-terminus. Such unusual peptide shows some features also found in microbial cellulases and contains a putative cellulose-binding domain. We propose that the faEG3-encoded EGase might especially hydrolyse the xyloglucans coating the cellulose microfibrils, thus rendering the cell wall more susceptible to the subsequent hydrolytic activity of the faEG1-encoded EGase.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off