A novel derivation of the boundary term for the action in Lanczos–Lovelock gravity

A novel derivation of the boundary term for the action in Lanczos–Lovelock gravity We present a novel derivation of the boundary term for the action in Lanczos–Lovelock gravity, starting from the boundary contribution in the variation of the Lanczos–Lovelock action. The derivation presented here is straightforward, i.e., one starts from the Lanczos–Lovelock action principle and the action itself dictates the boundary structure and hence the boundary term one needs to add to the action to make it well-posed. It also gives the full structure of the contribution at the boundary of the complete action, enabling us to read off the degrees of freedom to be fixed at the boundary, their corresponding conjugate momenta and the total derivative contribution on the boundary. We also provide a separate derivation of the Gauss–Bonnet case. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png General Relativity and Gravitation Springer Journals

A novel derivation of the boundary term for the action in Lanczos–Lovelock gravity

Loading next page...
 
/lp/springer_journal/a-novel-derivation-of-the-boundary-term-for-the-action-in-lanczos-rp7JjbYD30
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Physics; Theoretical, Mathematical and Computational Physics; Classical and Quantum Gravitation, Relativity Theory; Differential Geometry; Astronomy, Astrophysics and Cosmology; Quantum Physics
ISSN
0001-7701
eISSN
1572-9532
D.O.I.
10.1007/s10714-017-2289-5
Publisher site
See Article on Publisher Site

Abstract

We present a novel derivation of the boundary term for the action in Lanczos–Lovelock gravity, starting from the boundary contribution in the variation of the Lanczos–Lovelock action. The derivation presented here is straightforward, i.e., one starts from the Lanczos–Lovelock action principle and the action itself dictates the boundary structure and hence the boundary term one needs to add to the action to make it well-posed. It also gives the full structure of the contribution at the boundary of the complete action, enabling us to read off the degrees of freedom to be fixed at the boundary, their corresponding conjugate momenta and the total derivative contribution on the boundary. We also provide a separate derivation of the Gauss–Bonnet case.

Journal

General Relativity and GravitationSpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off