A Novel Clustering Algorithm in a Neutrosophic Recommender System for Medical Diagnosis

A Novel Clustering Algorithm in a Neutrosophic Recommender System for Medical Diagnosis Decision-making processes have been extensively used in artificial intelligence and cognitive sciences to explain and improve individual and social perception. As one of the most typical decision-making problems, medical diagnosis is used to analyze the relationship between symptoms and diseases according to uncertain and inconsistent information. It is essential to investigate the structure of a set of records on different levels such that similar patients can be treated concurrently within a group. In this paper, we propose a novel clustering algorithm in a neutrosophic recommender system for medical diagnosis. First, we define new algebraic structures for the system such as lattices, De Morgan algebra, Kleen algebra, MV algebra, BCK algebra, Stone algebra, and Brouwerian algebra. Based on these algebraic structures, we construct a neutrosophic recommender similarity matrix and a neutrosophic recommender equivalence matrix. A consecutive series of compositions between the neutrosophic recommender similarity matrices is performed to obtain the neutrosophic recommender equivalence matrix. From this matrix, a λ-cutting matrix is defined to conduct clustering among the neutrosophic recommender systems. Regarding the values of clustering validity indices, the Davies-Bouldin (DB) of the proposed method is approximately 20% better than those of the methods of Sahin (Neutrosophic Sets and Systems. 2014;2:18–24), Ye (J Intell Syst. 2014;23(4):379–89), and Ye (Soft Computing 2016;1–7). Analogously, the IFV and simplified silhouette with criterion (SSWC) of the proposal are better than those of the relevant methods with the improvement percentages being 30 and 70%, respectively. The results show that the proposed method is better than the related algorithms in terms of clustering quality whilst its computational time is slightly slower. The contributions of this research is significant in both algorithmic aspects of computational intelligence and and practical applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cognitive Computation Springer Journals

A Novel Clustering Algorithm in a Neutrosophic Recommender System for Medical Diagnosis

Loading next page...
 
/lp/springer_journal/a-novel-clustering-algorithm-in-a-neutrosophic-recommender-system-for-VJ1ez9pscc
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Biomedicine; Neurosciences; Computation by Abstract Devices; Artificial Intelligence (incl. Robotics); Computational Biology/Bioinformatics
ISSN
1866-9956
eISSN
1866-9964
D.O.I.
10.1007/s12559-017-9462-8
Publisher site
See Article on Publisher Site

Abstract

Decision-making processes have been extensively used in artificial intelligence and cognitive sciences to explain and improve individual and social perception. As one of the most typical decision-making problems, medical diagnosis is used to analyze the relationship between symptoms and diseases according to uncertain and inconsistent information. It is essential to investigate the structure of a set of records on different levels such that similar patients can be treated concurrently within a group. In this paper, we propose a novel clustering algorithm in a neutrosophic recommender system for medical diagnosis. First, we define new algebraic structures for the system such as lattices, De Morgan algebra, Kleen algebra, MV algebra, BCK algebra, Stone algebra, and Brouwerian algebra. Based on these algebraic structures, we construct a neutrosophic recommender similarity matrix and a neutrosophic recommender equivalence matrix. A consecutive series of compositions between the neutrosophic recommender similarity matrices is performed to obtain the neutrosophic recommender equivalence matrix. From this matrix, a λ-cutting matrix is defined to conduct clustering among the neutrosophic recommender systems. Regarding the values of clustering validity indices, the Davies-Bouldin (DB) of the proposed method is approximately 20% better than those of the methods of Sahin (Neutrosophic Sets and Systems. 2014;2:18–24), Ye (J Intell Syst. 2014;23(4):379–89), and Ye (Soft Computing 2016;1–7). Analogously, the IFV and simplified silhouette with criterion (SSWC) of the proposal are better than those of the relevant methods with the improvement percentages being 30 and 70%, respectively. The results show that the proposed method is better than the related algorithms in terms of clustering quality whilst its computational time is slightly slower. The contributions of this research is significant in both algorithmic aspects of computational intelligence and and practical applications.

Journal

Cognitive ComputationSpringer Journals

Published: Apr 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off