A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from flavonoids

A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from... α-L-Rhamnosyl-β-D-glucosidase (rutinosidase) hydrolyzes the glycosidic linkage between the disaccharide 6-O-α-L-rhamnosyl-β-D-glucoside (rutinose) and the aglycone. We identified a hypothetical protein (annotated as AO090012000917) encoded in the Aspergillus oryzae genome that exhibits sequence similarity with Aspergillus niger rutinosidase. The recombinant enzyme was expressed in Pichia pastoris GS115 and purified as a glyco-protein with apparent molecular mass of 65–75 kDa by SDS-PAGE. After N-deglycosylation, we observed a 42- and 40-kDa band, representing proteins before and after N-terminal signal peptide processing, respectively. Optimal enzymatic activity was observed at pH 4.0 and temperature of 45 °C. This enzyme is also significantly thermo-stable, with 90% activity retained after 1 h at 45 °C and 70% activity retained after 4 h, even at 50 °C. Biochemical characterization revealed that the enzyme has higher substrate specificity for 3-O-linked flavonoid β-rutinosides like rutin and kaempferol-3-O-rutinoside, than for 7-O-linked flavonoid β-rutinoside like hesperidin. However, no activity was found with naringin, diosmin, monoglycosylated chromogenic substrates, and polymeric laminarin substrate. Kinetic analyses showed that K m value toward rutin was higher than those toward hesperidin and kaempferol-3-O-rutinoside. Meanwhile, k cat value toward hesperidin was lower than those toward kaempferol-3-O-rutinoside and rutin. Overall, the catalytic efficiency (k cat/K m ) was highest for kaempferol-3-O-rutinoside. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Microbiology and Biotechnology Springer Journals

A novel Aspergillus oryzae diglycosidase that hydrolyzes 6-O-α-L-rhamnosyl-β-D-glucoside from flavonoids

Loading next page...
 
/lp/springer_journal/a-novel-aspergillus-oryzae-diglycosidase-that-hydrolyzes-6-o-l-oqum87bVeA
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Life Sciences; Microbiology; Microbial Genetics and Genomics; Biotechnology
ISSN
0175-7598
eISSN
1432-0614
D.O.I.
10.1007/s00253-018-8840-9
Publisher site
See Article on Publisher Site

Abstract

α-L-Rhamnosyl-β-D-glucosidase (rutinosidase) hydrolyzes the glycosidic linkage between the disaccharide 6-O-α-L-rhamnosyl-β-D-glucoside (rutinose) and the aglycone. We identified a hypothetical protein (annotated as AO090012000917) encoded in the Aspergillus oryzae genome that exhibits sequence similarity with Aspergillus niger rutinosidase. The recombinant enzyme was expressed in Pichia pastoris GS115 and purified as a glyco-protein with apparent molecular mass of 65–75 kDa by SDS-PAGE. After N-deglycosylation, we observed a 42- and 40-kDa band, representing proteins before and after N-terminal signal peptide processing, respectively. Optimal enzymatic activity was observed at pH 4.0 and temperature of 45 °C. This enzyme is also significantly thermo-stable, with 90% activity retained after 1 h at 45 °C and 70% activity retained after 4 h, even at 50 °C. Biochemical characterization revealed that the enzyme has higher substrate specificity for 3-O-linked flavonoid β-rutinosides like rutin and kaempferol-3-O-rutinoside, than for 7-O-linked flavonoid β-rutinoside like hesperidin. However, no activity was found with naringin, diosmin, monoglycosylated chromogenic substrates, and polymeric laminarin substrate. Kinetic analyses showed that K m value toward rutin was higher than those toward hesperidin and kaempferol-3-O-rutinoside. Meanwhile, k cat value toward hesperidin was lower than those toward kaempferol-3-O-rutinoside and rutin. Overall, the catalytic efficiency (k cat/K m ) was highest for kaempferol-3-O-rutinoside.

Journal

Applied Microbiology and BiotechnologySpringer Journals

Published: Feb 23, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off