A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding

A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for... Three recent isolates of measles virus Fu, IMA, and SMD obtained by using B95a cells did not exhibit hemadsorption with African green monkey red blood cells (AGM-RBC). After long-term passage in Vero cells, these Vero cell-adapted strains derived from three isolates obtained the activity to agglutinate AGM-RBC. The primary sequences of the hemagglutinin (H protein) and fusion glycoproteins (F protein) from these two types of viruses were compared and revealed that several important amino acid residues in the H protein do not converge. After adaptation, Fu strain has an Asn to Tyr substitution at position 481 and IMA strain has two substitutions – an Asp to Asn at position 14 and a Ser to Gly at position 546, SMD strain also has a Ser to Gly substitution at position 546. Since the sequences of the F protein were identical between both types of viruses, the hemadsorption alteration from negative to positive might be the result of these substitutions. Site-directed mutagenesis of the H genes were performed to confirm that the substitution of Ser Gly at position 546 and Asn → Tyr at position 481 in the H protein were responsible for hemadsorption alteration. Anti-CD46 monoclonal antibody (M75 and M160) study made clear that these two substitutions also governed the MV H protein’s interaction with CD46 receptor. Our results showed that two important amino acid residues in MV H protein govern the binding to CD46 receptor and hemadsorption. In this paper, we reported a novel amino acid residue at position 546 in MV H protein, which was critical for hemadsorption and CD46 binding. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

A novel amino acid position in hemagglutinin glycoprotein of measles virus is responsible for hemadsorption and CD46 binding

Loading next page...
 
/lp/springer_journal/a-novel-amino-acid-position-in-hemagglutinin-glycoprotein-of-measles-ukTVdwbff1
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050200025
Publisher site
See Article on Publisher Site

Abstract

Three recent isolates of measles virus Fu, IMA, and SMD obtained by using B95a cells did not exhibit hemadsorption with African green monkey red blood cells (AGM-RBC). After long-term passage in Vero cells, these Vero cell-adapted strains derived from three isolates obtained the activity to agglutinate AGM-RBC. The primary sequences of the hemagglutinin (H protein) and fusion glycoproteins (F protein) from these two types of viruses were compared and revealed that several important amino acid residues in the H protein do not converge. After adaptation, Fu strain has an Asn to Tyr substitution at position 481 and IMA strain has two substitutions – an Asp to Asn at position 14 and a Ser to Gly at position 546, SMD strain also has a Ser to Gly substitution at position 546. Since the sequences of the F protein were identical between both types of viruses, the hemadsorption alteration from negative to positive might be the result of these substitutions. Site-directed mutagenesis of the H genes were performed to confirm that the substitution of Ser Gly at position 546 and Asn → Tyr at position 481 in the H protein were responsible for hemadsorption alteration. Anti-CD46 monoclonal antibody (M75 and M160) study made clear that these two substitutions also governed the MV H protein’s interaction with CD46 receptor. Our results showed that two important amino acid residues in MV H protein govern the binding to CD46 receptor and hemadsorption. In this paper, we reported a novel amino acid residue at position 546 in MV H protein, which was critical for hemadsorption and CD46 binding.

Journal

Archives of VirologySpringer Journals

Published: Apr 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off