A novel adaptive learning algorithm for low-dimensional feature space using memristor-crossbar implementation and on-chip training

A novel adaptive learning algorithm for low-dimensional feature space using memristor-crossbar... Proposing an efficient algorithm with an appropriate hardware implementation has always been an interesting and a rather challenging field of research in Artificial Intelligence (AI). Fuzzy logic is one of the techniques that can be used for accurate and high-speed modeling as well as controlling complex and nonlinear systems. The “defuzzification” process during the test phase as well as the repetitive processes in order to find the optimal parameters during the training phase, lead to some serious limitations in real-time applications and hardware implementation of these algorithms. The proposed algorithm employs Ink Drop Spread (IDS) concept to mimic the functionality of human brain. In this algorithm, learning is based on the distance between training data and the “learning plane”. Unlike previous algorithms, the new one does not need to partition nor the input space neither the calculation of IDS plane features. Besides, the output is obtained without using the optimization methods. The proposed algorithm is a numerical foundation that does not encounter a processing problem and lack of memory in dealing with different datasets consisting of a large number of samples. This algorithm can be efficiently implemented on memristor crossbar/CMOS hardware platform in terms of area and speed. This http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

A novel adaptive learning algorithm for low-dimensional feature space using memristor-crossbar implementation and on-chip training

Loading next page...
 
/lp/springer_journal/a-novel-adaptive-learning-algorithm-for-low-dimensional-feature-space-sEVsbSIT4J
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-018-1202-6
Publisher site
See Article on Publisher Site

Abstract

Proposing an efficient algorithm with an appropriate hardware implementation has always been an interesting and a rather challenging field of research in Artificial Intelligence (AI). Fuzzy logic is one of the techniques that can be used for accurate and high-speed modeling as well as controlling complex and nonlinear systems. The “defuzzification” process during the test phase as well as the repetitive processes in order to find the optimal parameters during the training phase, lead to some serious limitations in real-time applications and hardware implementation of these algorithms. The proposed algorithm employs Ink Drop Spread (IDS) concept to mimic the functionality of human brain. In this algorithm, learning is based on the distance between training data and the “learning plane”. Unlike previous algorithms, the new one does not need to partition nor the input space neither the calculation of IDS plane features. Besides, the output is obtained without using the optimization methods. The proposed algorithm is a numerical foundation that does not encounter a processing problem and lack of memory in dealing with different datasets consisting of a large number of samples. This algorithm can be efficiently implemented on memristor crossbar/CMOS hardware platform in terms of area and speed. This

Journal

Applied IntelligenceSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off