A novel 4-hydroxycoumarin biosynthetic pathway

A novel 4-hydroxycoumarin biosynthetic pathway Coumarin forms in melilotoside (trans-ortho-coumaric acid glucoside)-containing plant species upon cell damage. In moldy melilotoside-containing plant material, trans-ortho-coumaric acid is converted by fungi to 4-hydroxycoumarin, two molecules of which spontaneously combine with formaldehyde to give dicoumarol. Dicoumarol causes internal bleeding in livestock and is the forerunner of the warfarin group of medicinal anticoagulants. Here, we report 4-hydroxycoumarin formation by biphenyl synthase (BIS). Two new BIS cDNAs were isolated from elicitor-treated Sorbus aucuparia cell cultures. The encoded isoenzymes preferred ortho-hydroxybenzoyl (salicoyl)-CoA as a starter substrate and catalyzed a single decarboxylative condensation with malonyl-CoA to give 4-hydroxycoumarin. When elicitor-treated S. aucuparia cell cultures were fed with the N-acetylcysteamine thioester of salicylic acid, 4-hydroxycoumarin accumulated in the culture medium. Incubation of the BIS isoenzymes with benzoyl-CoA and malonyl-CoA resulted in the formation of 3,5-dihydroxybiphenyl which is the precursor of the phytoalexins of the Maloideae. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A novel 4-hydroxycoumarin biosynthetic pathway

Loading next page...
 
/lp/springer_journal/a-novel-4-hydroxycoumarin-biosynthetic-pathway-iPZ9RNj16s
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9548-0
Publisher site
See Article on Publisher Site

Abstract

Coumarin forms in melilotoside (trans-ortho-coumaric acid glucoside)-containing plant species upon cell damage. In moldy melilotoside-containing plant material, trans-ortho-coumaric acid is converted by fungi to 4-hydroxycoumarin, two molecules of which spontaneously combine with formaldehyde to give dicoumarol. Dicoumarol causes internal bleeding in livestock and is the forerunner of the warfarin group of medicinal anticoagulants. Here, we report 4-hydroxycoumarin formation by biphenyl synthase (BIS). Two new BIS cDNAs were isolated from elicitor-treated Sorbus aucuparia cell cultures. The encoded isoenzymes preferred ortho-hydroxybenzoyl (salicoyl)-CoA as a starter substrate and catalyzed a single decarboxylative condensation with malonyl-CoA to give 4-hydroxycoumarin. When elicitor-treated S. aucuparia cell cultures were fed with the N-acetylcysteamine thioester of salicylic acid, 4-hydroxycoumarin accumulated in the culture medium. Incubation of the BIS isoenzymes with benzoyl-CoA and malonyl-CoA resulted in the formation of 3,5-dihydroxybiphenyl which is the precursor of the phytoalexins of the Maloideae.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 15, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off