A novel 3D3C particle tracking method suitable for microfluidic flow measurements

A novel 3D3C particle tracking method suitable for microfluidic flow measurements This article presents a novel method for determining the three-dimensional location of fluorescent particles that is suitable for three-dimensional particle tracking velocimetry measurements in microfluidic flows. This method determines the depth of a particle by inserting a convex lens and axicon into the optical path between a microscope and camera. For particles close to the focal plane, this converts the wavefront from a particle into a Bessel beam, the frequency, and center of which can be directly related to the three-dimensional position of the particle. A robust image analysis method is presented that can determine the properties of the Bessel beam necessary to calculate the particle position. The theory and data analysis method are verified by comparing the calculated position of 1-μm particles to the known position of the particles which scanned through a depth of 100 μm. The average error in the calculated position was 4 μm. Finally, the method is applied to 3D3C particle tracking velocimetry of Poiseuille flow in a 200-μm-deep channel. Uniquely, this method requires no calibration procedure and is insensitive to variations in particle size and brightness. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A novel 3D3C particle tracking method suitable for microfluidic flow measurements

Loading next page...
 
/lp/springer_journal/a-novel-3d3c-particle-tracking-method-suitable-for-microfluidic-flow-z9h20rUHZD
Publisher
Springer-Verlag
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1453-7
Publisher site
See Article on Publisher Site

Abstract

This article presents a novel method for determining the three-dimensional location of fluorescent particles that is suitable for three-dimensional particle tracking velocimetry measurements in microfluidic flows. This method determines the depth of a particle by inserting a convex lens and axicon into the optical path between a microscope and camera. For particles close to the focal plane, this converts the wavefront from a particle into a Bessel beam, the frequency, and center of which can be directly related to the three-dimensional position of the particle. A robust image analysis method is presented that can determine the properties of the Bessel beam necessary to calculate the particle position. The theory and data analysis method are verified by comparing the calculated position of 1-μm particles to the known position of the particles which scanned through a depth of 100 μm. The average error in the calculated position was 4 μm. Finally, the method is applied to 3D3C particle tracking velocimetry of Poiseuille flow in a 200-μm-deep channel. Uniquely, this method requires no calibration procedure and is insensitive to variations in particle size and brightness.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 12, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off