A Novel ω3-Desaturase in the Deep Sea Giant Tubeworm Riftia pachyptila

A Novel ω3-Desaturase in the Deep Sea Giant Tubeworm Riftia pachyptila One paradox of the trophic biochemistry of the deep sea giant tubeworm Riftia pachyptila, endemic to hydrothermal vent sites and nourished by polyunsaturated fatty acid (PUFA) deficiency chemolitoautotrophic sulfide-oxidizing bacteria, is the source of their PUFAs. Biosynthesis of PUFA starts with two precursors C18:2n-6 and C18:3n-3, which cannot be biosynthesized by most animals due to lack of ω6- and ω3-desaturase; thus, C18:2n-6 and C18:3n-3 are generally essential fatty acids for animals. Here, we characterized a gene derived from the R. pachyptila located by hydrothermal vent, which encoded a novel ω3-desaturase (Rp3Fad). The gene was identified by searching the R. pachyptila transcriptome database using known ω3-desaturases, and its predicted protein showed 37–45% identical to ω3-desaturases of fungus and microalgae, and only 31% identitical to nematode Caenorhabditis elegans ω3-desaturase. Expression in yeast Saccharomyces cerevisiae showed that the Rp3Fad could desaturate C18:2n-6 and C18:3n-6 into C18:3n-3 and C18:4n-3, respectively, displaying a Δ15 activity similar to plant ω3-desaturase, but it showed no activity towards C20 n-6 PUFA substrates, differing from the well-characterized C. elegans ω3-desaturases. Δ5, Δ6, Δ8, and Δ12 activity were also tested, resulting in no corresponding production. The function of ω3-desaturase identified in R. pachyptila could produce C18:3n − 3 used in synthesis of n − 3 series PUFAs, suggesting an adaption to PUFA deficiency environment in deep sea hydrothermal vent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biotechnology Springer Journals

A Novel ω3-Desaturase in the Deep Sea Giant Tubeworm Riftia pachyptila

Loading next page...
 
/lp/springer_journal/a-novel-3-desaturase-in-the-deep-sea-giant-tubeworm-riftia-pachyptila-c7NGPKZ0DE
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Freshwater & Marine Ecology; Microbiology; Zoology; Engineering, general
ISSN
1436-2228
eISSN
1436-2236
D.O.I.
10.1007/s10126-017-9753-9
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial