A Novel ω3-Desaturase in the Deep Sea Giant Tubeworm Riftia pachyptila

A Novel ω3-Desaturase in the Deep Sea Giant Tubeworm Riftia pachyptila One paradox of the trophic biochemistry of the deep sea giant tubeworm Riftia pachyptila, endemic to hydrothermal vent sites and nourished by polyunsaturated fatty acid (PUFA) deficiency chemolitoautotrophic sulfide-oxidizing bacteria, is the source of their PUFAs. Biosynthesis of PUFA starts with two precursors C18:2n-6 and C18:3n-3, which cannot be biosynthesized by most animals due to lack of ω6- and ω3-desaturase; thus, C18:2n-6 and C18:3n-3 are generally essential fatty acids for animals. Here, we characterized a gene derived from the R. pachyptila located by hydrothermal vent, which encoded a novel ω3-desaturase (Rp3Fad). The gene was identified by searching the R. pachyptila transcriptome database using known ω3-desaturases, and its predicted protein showed 37–45% identical to ω3-desaturases of fungus and microalgae, and only 31% identitical to nematode Caenorhabditis elegans ω3-desaturase. Expression in yeast Saccharomyces cerevisiae showed that the Rp3Fad could desaturate C18:2n-6 and C18:3n-6 into C18:3n-3 and C18:4n-3, respectively, displaying a Δ15 activity similar to plant ω3-desaturase, but it showed no activity towards C20 n-6 PUFA substrates, differing from the well-characterized C. elegans ω3-desaturases. Δ5, Δ6, Δ8, and Δ12 activity were also tested, resulting in no corresponding production. The function of ω3-desaturase identified in R. pachyptila could produce C18:3n − 3 used in synthesis of n − 3 series PUFAs, suggesting an adaption to PUFA deficiency environment in deep sea hydrothermal vent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Biotechnology Springer Journals

A Novel ω3-Desaturase in the Deep Sea Giant Tubeworm Riftia pachyptila

Loading next page...
 
/lp/springer_journal/a-novel-3-desaturase-in-the-deep-sea-giant-tubeworm-riftia-pachyptila-c7NGPKZ0DE
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Freshwater & Marine Ecology; Microbiology; Zoology; Engineering, general
ISSN
1436-2228
eISSN
1436-2236
D.O.I.
10.1007/s10126-017-9753-9
Publisher site
See Article on Publisher Site

Abstract

One paradox of the trophic biochemistry of the deep sea giant tubeworm Riftia pachyptila, endemic to hydrothermal vent sites and nourished by polyunsaturated fatty acid (PUFA) deficiency chemolitoautotrophic sulfide-oxidizing bacteria, is the source of their PUFAs. Biosynthesis of PUFA starts with two precursors C18:2n-6 and C18:3n-3, which cannot be biosynthesized by most animals due to lack of ω6- and ω3-desaturase; thus, C18:2n-6 and C18:3n-3 are generally essential fatty acids for animals. Here, we characterized a gene derived from the R. pachyptila located by hydrothermal vent, which encoded a novel ω3-desaturase (Rp3Fad). The gene was identified by searching the R. pachyptila transcriptome database using known ω3-desaturases, and its predicted protein showed 37–45% identical to ω3-desaturases of fungus and microalgae, and only 31% identitical to nematode Caenorhabditis elegans ω3-desaturase. Expression in yeast Saccharomyces cerevisiae showed that the Rp3Fad could desaturate C18:2n-6 and C18:3n-6 into C18:3n-3 and C18:4n-3, respectively, displaying a Δ15 activity similar to plant ω3-desaturase, but it showed no activity towards C20 n-6 PUFA substrates, differing from the well-characterized C. elegans ω3-desaturases. Δ5, Δ6, Δ8, and Δ12 activity were also tested, resulting in no corresponding production. The function of ω3-desaturase identified in R. pachyptila could produce C18:3n − 3 used in synthesis of n − 3 series PUFAs, suggesting an adaption to PUFA deficiency environment in deep sea hydrothermal vent.

Journal

Marine BiotechnologySpringer Journals

Published: May 10, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off