A Note on Mascarenhas' Counterexample about Global Convergence of the Affine Scaling Algorithm

A Note on Mascarenhas' Counterexample about Global Convergence of the Affine Scaling Algorithm Mascarenhas gave an instance of linear programming problems to show that the long-step affine scaling algorithm can fail to converge to an optimal solution with the step-size λ=0.999 . In this note, we give a simple and clear geometrical explanation for this phenomenon in terms of the Newton barrier flow induced by projecting the homogeneous affine scaling vector field conically onto a hyperplane where the objective function is constant. Based on this interpretation, we show that the algorithm can fail for "any" λ greater than about 0.91 (a more precise value is 0.91071), which is considerably shorter than λ = 0.95 and 0.99 recommended for efficient implementations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

A Note on Mascarenhas' Counterexample about Global Convergence of the Affine Scaling Algorithm

Loading next page...
 
/lp/springer_journal/a-note-on-mascarenhas-counterexample-about-global-convergence-of-the-H2KVjIa2AJ
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s002459900127
Publisher site
See Article on Publisher Site

Abstract

Mascarenhas gave an instance of linear programming problems to show that the long-step affine scaling algorithm can fail to converge to an optimal solution with the step-size λ=0.999 . In this note, we give a simple and clear geometrical explanation for this phenomenon in terms of the Newton barrier flow induced by projecting the homogeneous affine scaling vector field conically onto a hyperplane where the objective function is constant. Based on this interpretation, we show that the algorithm can fail for "any" λ greater than about 0.91 (a more precise value is 0.91071), which is considerably shorter than λ = 0.95 and 0.99 recommended for efficient implementations.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Aug 1, 2091

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off