A note on improved statistical approaches to account for pseudoprogression

A note on improved statistical approaches to account for pseudoprogression Responses to immuno-oncology agents are often subject to misinterpretation as apparent tumor growth due to immune infiltration leads to the appearance of progressive disease and can result in the discontinuation of effective therapeutic agents. Better statistical strategies to determine experimental outcomes are needed to distinguish between true and pseudoprogression. We applied time-to-event statistical analyses methods that account for study design features and capture the longitudinal and panoramic aspects of pseudoprogression to test superiority of a combination of RRx-001, a novel tumor-associated macrophage polarizing agent in Phase 2, and an anti-PD-L1 antibody in a myeloma preclinical model, comparing to traditional, mean-based mixed effects modeling approaches that did not show statistical significance. Nonparametric p values for the difference of cumulative incidence rates of time to ≥ 50% tumor growth reduction and its associated restricted mean survival times are computed and found to be statistically significant. Kaplan–Meier description of time-to-volume reduction (≥ 50%) coupled with Cox’s proportional hazards model follows the data longitudinally and therefore permits an analysis of immune infiltration resolution, making it an improved method for analysis of preclinical experiments with immuno-oncology agents. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cancer Chemotherapy and Pharmacology Springer Journals

A note on improved statistical approaches to account for pseudoprogression

Loading next page...
 
/lp/springer_journal/a-note-on-improved-statistical-approaches-to-account-for-gavqts52pa
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Medicine & Public Health; Oncology; Pharmacology/Toxicology; Cancer Research
ISSN
0344-5704
eISSN
1432-0843
D.O.I.
10.1007/s00280-018-3529-4
Publisher site
See Article on Publisher Site

Abstract

Responses to immuno-oncology agents are often subject to misinterpretation as apparent tumor growth due to immune infiltration leads to the appearance of progressive disease and can result in the discontinuation of effective therapeutic agents. Better statistical strategies to determine experimental outcomes are needed to distinguish between true and pseudoprogression. We applied time-to-event statistical analyses methods that account for study design features and capture the longitudinal and panoramic aspects of pseudoprogression to test superiority of a combination of RRx-001, a novel tumor-associated macrophage polarizing agent in Phase 2, and an anti-PD-L1 antibody in a myeloma preclinical model, comparing to traditional, mean-based mixed effects modeling approaches that did not show statistical significance. Nonparametric p values for the difference of cumulative incidence rates of time to ≥ 50% tumor growth reduction and its associated restricted mean survival times are computed and found to be statistically significant. Kaplan–Meier description of time-to-volume reduction (≥ 50%) coupled with Cox’s proportional hazards model follows the data longitudinally and therefore permits an analysis of immune infiltration resolution, making it an improved method for analysis of preclinical experiments with immuno-oncology agents.

Journal

Cancer Chemotherapy and PharmacologySpringer Journals

Published: Feb 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off