A Node-Level Blocking Probability Analysis for WRONs

A Node-Level Blocking Probability Analysis for WRONs This work presents the blocking performance of a single node with (full or limited) wavelength conversion in wavelength routed optical networks (WRON) based on the theory of probability. A blocking probability model is proposed. Particularly, we pay more attention to investigate wavelength routing node performance improvement by using the more feasible case of limited wavelength conversion. Based on our analytical model, we calculate the blocking probability for a single wavelength routing node and then make a simulation to validate it. It is shown that a node with low conversion degrees having a small number of fiber link ports and a large number of wavelengths per link is a more realistic choice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A Node-Level Blocking Probability Analysis for WRONs

Loading next page...
 
/lp/springer_journal/a-node-level-blocking-probability-analysis-for-wrons-jB1xyX7gjD
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-005-2485-1
Publisher site
See Article on Publisher Site

Abstract

This work presents the blocking performance of a single node with (full or limited) wavelength conversion in wavelength routed optical networks (WRON) based on the theory of probability. A blocking probability model is proposed. Particularly, we pay more attention to investigate wavelength routing node performance improvement by using the more feasible case of limited wavelength conversion. Based on our analytical model, we calculate the blocking probability for a single wavelength routing node and then make a simulation to validate it. It is shown that a node with low conversion degrees having a small number of fiber link ports and a large number of wavelengths per link is a more realistic choice.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Mar 18, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off