A new tracking mode for improved Martian gravity field measurement

A new tracking mode for improved Martian gravity field measurement The Martian gravity field has been improved significantly in terms of resolution, with the spatial resolution rising to 100 km and accuracy increasing up to the 110 degree and order, assisted by data collected in Mars exploration missions like MGS, MRO, and Odyssey. However, as the tracking data used for the Martian gravity field solution are from polar orbit at a low height (∼400 km), improvements in the low degree coefficients are possible with high orbiters and various inclinations. In our research, we simulate a future Chinese Mars mission, making use of its orbit, to investigate potential contributions to the Martian gravity field solution. As the Chinese Mars mission will include a lander, we investigate the same beam interferometry tracking mode for a more precise and accurate Martian gravity field solution. Our results show that this tracking mode will substantially improve the gravity field model accuracy in comparison with those models using only polar orbit data. Model accuracy is assessed by power spectrum analysis and precise orbit determination. All the simulation work are accomplished with our independent developed software. Our research will be a reference for the first Chinese Mars exploration mission. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Astrophysics and Space Science Springer Journals

A new tracking mode for improved Martian gravity field measurement

Loading next page...
 
/lp/springer_journal/a-new-tracking-mode-for-improved-martian-gravity-field-measurement-x4tOYhrKZh
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V., part of Springer Nature
Subject
Physics; Astrophysics and Astroparticles; Astronomy, Observations and Techniques; Cosmology; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics) ; Astrobiology
ISSN
0004-640X
eISSN
1572-946X
D.O.I.
10.1007/s10509-017-3214-9
Publisher site
See Article on Publisher Site

Abstract

The Martian gravity field has been improved significantly in terms of resolution, with the spatial resolution rising to 100 km and accuracy increasing up to the 110 degree and order, assisted by data collected in Mars exploration missions like MGS, MRO, and Odyssey. However, as the tracking data used for the Martian gravity field solution are from polar orbit at a low height (∼400 km), improvements in the low degree coefficients are possible with high orbiters and various inclinations. In our research, we simulate a future Chinese Mars mission, making use of its orbit, to investigate potential contributions to the Martian gravity field solution. As the Chinese Mars mission will include a lander, we investigate the same beam interferometry tracking mode for a more precise and accurate Martian gravity field solution. Our results show that this tracking mode will substantially improve the gravity field model accuracy in comparison with those models using only polar orbit data. Model accuracy is assessed by power spectrum analysis and precise orbit determination. All the simulation work are accomplished with our independent developed software. Our research will be a reference for the first Chinese Mars exploration mission.

Journal

Astrophysics and Space ScienceSpringer Journals

Published: Nov 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off