A new pinning control scheme of complex networks based on data flow

A new pinning control scheme of complex networks based on data flow In this paper, a new pinning control scheme called DF (data flow)-based pinning scheme is proposed. The new scheme can obtain the similar pinning efficiency with BC-based pinning scheme in real-world networks. Comparing with BC-based pinning scheme, DF-based pinning scheme has two main advantages. First, it just needs local information of network. Second, the new pinning scheme has a much lower time complexity than BC-based pinning scheme. In this paper, we have pinned two real-world networks (the US airline routing map network and the protein–protein network in yeast) to compare the new pinning scheme with degree-based, BC-based, LBC-based pinning schemes and we also pin a small-world network, a scale-free network to analyze DF-based pinning scheme in detail. Based on the Lyapunov stability theory, the validity of the scheme is proved. Finally, the numerical simulations are verified the effectiveness of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Dynamics Springer Journals

A new pinning control scheme of complex networks based on data flow

Loading next page...
 
/lp/springer_journal/a-new-pinning-control-scheme-of-complex-networks-based-on-data-flow-1MmijziYem
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
ISSN
0924-090X
eISSN
1573-269X
D.O.I.
10.1007/s11071-017-3615-x
Publisher site
See Article on Publisher Site

Abstract

In this paper, a new pinning control scheme called DF (data flow)-based pinning scheme is proposed. The new scheme can obtain the similar pinning efficiency with BC-based pinning scheme in real-world networks. Comparing with BC-based pinning scheme, DF-based pinning scheme has two main advantages. First, it just needs local information of network. Second, the new pinning scheme has a much lower time complexity than BC-based pinning scheme. In this paper, we have pinned two real-world networks (the US airline routing map network and the protein–protein network in yeast) to compare the new pinning scheme with degree-based, BC-based, LBC-based pinning schemes and we also pin a small-world network, a scale-free network to analyze DF-based pinning scheme in detail. Based on the Lyapunov stability theory, the validity of the scheme is proved. Finally, the numerical simulations are verified the effectiveness of the proposed method.

Journal

Nonlinear DynamicsSpringer Journals

Published: Jul 12, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial