A new particle tracking algorithm based on deterministic annealing and alternative distance measures

A new particle tracking algorithm based on deterministic annealing and alternative distance measures We describe a new particle tracking algorithm for the interrogation of double frame single exposure data, which is obtained with particle image velocimetry. The new procedure is based on an algorithm which has recently been proposed by Gold et al. (Gold et al., 1998) for solving point matching problems in statistical pattern recognition. For a given interrogation window, the algorithm simultaneously extracts: (i) the correct correspondences between particles in both frames and (ii) an estimate of the local flow-field parameters. Contrary to previous methods, the algorithm determines not only the local velocity, but other local components of the flow field, for example rotation and shear. This makes the new interrogation method superior to standard methods in particular in regions with high velocity gradients (e.g. vortices or shear flows). We perform benchmarks with three standard particle image velocimetry (PIV) and particle tracking velocimetry (PTV) methods: cross-correlation, nearest neighbour search, and image relaxation. We show that the new algorithm requires less particles per interrogation window than cross-correlation and allows for much higher particle densities than the other PTV methods. Consequently, one may obtain the velocity field at high spatial resolution even in regions of very fast flows. Finally, we find that the new algorithm is more robust against out-of-plane noise than previously proposed methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A new particle tracking algorithm based on deterministic annealing and alternative distance measures

Loading next page...
 
/lp/springer_journal/a-new-particle-tracking-algorithm-based-on-deterministic-annealing-and-0sigW7xI1Q
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480050412
Publisher site
See Article on Publisher Site

Abstract

We describe a new particle tracking algorithm for the interrogation of double frame single exposure data, which is obtained with particle image velocimetry. The new procedure is based on an algorithm which has recently been proposed by Gold et al. (Gold et al., 1998) for solving point matching problems in statistical pattern recognition. For a given interrogation window, the algorithm simultaneously extracts: (i) the correct correspondences between particles in both frames and (ii) an estimate of the local flow-field parameters. Contrary to previous methods, the algorithm determines not only the local velocity, but other local components of the flow field, for example rotation and shear. This makes the new interrogation method superior to standard methods in particular in regions with high velocity gradients (e.g. vortices or shear flows). We perform benchmarks with three standard particle image velocimetry (PIV) and particle tracking velocimetry (PTV) methods: cross-correlation, nearest neighbour search, and image relaxation. We show that the new algorithm requires less particles per interrogation window than cross-correlation and allows for much higher particle densities than the other PTV methods. Consequently, one may obtain the velocity field at high spatial resolution even in regions of very fast flows. Finally, we find that the new algorithm is more robust against out-of-plane noise than previously proposed methods.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 6, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off