A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics and GIS

A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics... Soil hydraulic parameters are important for irrigation scheduling. In the domain of “precision irrigation”, knowledge of the spatial distribution of these parameters is useful in determining the maximum irrigation rate for each field in a catchment. This study focuses on the development of a new methodology to assess the spatial distribution of the maximum irrigation rate depending on the available soil water holding capacity (ASWHC). This methodology combines geostatistical techniques with geographical information system (GIS) tools. A pilot zone of 12 400 ha in a Spanish Mediterranean area was selected to develop this methodology. The linear coregionalization model (LMCR), considering the percentage of sand, carbonates, and ASWHC at others soil depths as covariates, was the best option to model the ASWHC. Other required soil parameters were also spatially modeled. The percent of coarse fragments was modeled by regression kriging considering the soil map as an auxiliary variable. The bulk density was spatially modeled by LMCR, and extended to the rooting depth by linear regression. The spatial distributions modeled were implemented in a GIS with other spatial information layers of irrigation management parameters, such as the maximum allowable depletion of soil water content, the percent of wetted soil and the irrigation depth. The combination of these layers in the GIS was used to estimate the maximum irrigation rates for each field. A propagation error analysis was performed to know the uncertainties in the maximum irrigation rate estimation. Based on this information, the irrigation managers could optimize the irrigation rates for each field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics and GIS

Loading next page...
 
/lp/springer_journal/a-new-methodology-to-assess-the-maximum-irrigation-rates-at-catchment-6JlxmTdiYp
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-015-9392-y
Publisher site
See Article on Publisher Site

Abstract

Soil hydraulic parameters are important for irrigation scheduling. In the domain of “precision irrigation”, knowledge of the spatial distribution of these parameters is useful in determining the maximum irrigation rate for each field in a catchment. This study focuses on the development of a new methodology to assess the spatial distribution of the maximum irrigation rate depending on the available soil water holding capacity (ASWHC). This methodology combines geostatistical techniques with geographical information system (GIS) tools. A pilot zone of 12 400 ha in a Spanish Mediterranean area was selected to develop this methodology. The linear coregionalization model (LMCR), considering the percentage of sand, carbonates, and ASWHC at others soil depths as covariates, was the best option to model the ASWHC. Other required soil parameters were also spatially modeled. The percent of coarse fragments was modeled by regression kriging considering the soil map as an auxiliary variable. The bulk density was spatially modeled by LMCR, and extended to the rooting depth by linear regression. The spatial distributions modeled were implemented in a GIS with other spatial information layers of irrigation management parameters, such as the maximum allowable depletion of soil water content, the percent of wetted soil and the irrigation depth. The combination of these layers in the GIS was used to estimate the maximum irrigation rates for each field. A propagation error analysis was performed to know the uncertainties in the maximum irrigation rate estimation. Based on this information, the irrigation managers could optimize the irrigation rates for each field.

Journal

Precision AgricultureSpringer Journals

Published: Apr 2, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off