A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics and GIS

A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics... Soil hydraulic parameters are important for irrigation scheduling. In the domain of “precision irrigation”, knowledge of the spatial distribution of these parameters is useful in determining the maximum irrigation rate for each field in a catchment. This study focuses on the development of a new methodology to assess the spatial distribution of the maximum irrigation rate depending on the available soil water holding capacity (ASWHC). This methodology combines geostatistical techniques with geographical information system (GIS) tools. A pilot zone of 12 400 ha in a Spanish Mediterranean area was selected to develop this methodology. The linear coregionalization model (LMCR), considering the percentage of sand, carbonates, and ASWHC at others soil depths as covariates, was the best option to model the ASWHC. Other required soil parameters were also spatially modeled. The percent of coarse fragments was modeled by regression kriging considering the soil map as an auxiliary variable. The bulk density was spatially modeled by LMCR, and extended to the rooting depth by linear regression. The spatial distributions modeled were implemented in a GIS with other spatial information layers of irrigation management parameters, such as the maximum allowable depletion of soil water content, the percent of wetted soil and the irrigation depth. The combination of these layers in the GIS was used to estimate the maximum irrigation rates for each field. A propagation error analysis was performed to know the uncertainties in the maximum irrigation rate estimation. Based on this information, the irrigation managers could optimize the irrigation rates for each field. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A new methodology to assess the maximum irrigation rates at catchment scale using geostatistics and GIS

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial