A new method using double distributed joint interface model for three-dimensional dynamics prediction of spindle-holder-tool system

A new method using double distributed joint interface model for three-dimensional dynamics... The cutting process stability strongly depends on dynamics of the spindle-holder-tool system, which often changes and is determined by impact hammer testing in general. In order to avoid repeated and time-consuming impact hammer testing on different spindle-holder-tool combinations, this paper proposes a new method for three-dimensional dynamics prediction of spindle-holder-tool system. The system is modeled using Timoshenko’s beam theory and substructure synthesis method. The tool-holder connection is regarded as a double distributed joint interface model including a collet, a holder-collet joint interface and a tool-collet joint interface. The two joint interfaces are further modeled as two sets of independent spring-damper elements, while the collet and tool are modeled as Timoshenko beams with varying cross-sections. The substructure synthesis method is adopted to obtain the equation of motion of the spindle-holder-tool system. Finally, experiments of bending, torsional, and axial FRFs are carried out to verify the proposed method. Good agreements show that the new method is capable of predicting tool point FRFs more accurately compared with the existing methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

A new method using double distributed joint interface model for three-dimensional dynamics prediction of spindle-holder-tool system

Loading next page...
 
/lp/springer_journal/a-new-method-using-double-distributed-joint-interface-model-for-three-0neF8sfW0k
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1394-7
Publisher site
See Article on Publisher Site

Abstract

The cutting process stability strongly depends on dynamics of the spindle-holder-tool system, which often changes and is determined by impact hammer testing in general. In order to avoid repeated and time-consuming impact hammer testing on different spindle-holder-tool combinations, this paper proposes a new method for three-dimensional dynamics prediction of spindle-holder-tool system. The system is modeled using Timoshenko’s beam theory and substructure synthesis method. The tool-holder connection is regarded as a double distributed joint interface model including a collet, a holder-collet joint interface and a tool-collet joint interface. The two joint interfaces are further modeled as two sets of independent spring-damper elements, while the collet and tool are modeled as Timoshenko beams with varying cross-sections. The substructure synthesis method is adopted to obtain the equation of motion of the spindle-holder-tool system. Finally, experiments of bending, torsional, and axial FRFs are carried out to verify the proposed method. Good agreements show that the new method is capable of predicting tool point FRFs more accurately compared with the existing methods.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off