A New Method of Creating High-Temperature Speckle Patterns and Its Application in the Determination of the High-Temperature Mechanical Properties of Metals

A New Method of Creating High-Temperature Speckle Patterns and Its Application in the... Speckle techniques, such as DIC (Digital Image Correlation) and DSP (Digital Speckle Photography), are frequently used to determine the high-temperature mechanical properties of materials. Speckle techniques require the creation of a random speckle pattern on the surface of the specimen. The most commonly used approach to creating a high-contrast speckle pattern is to spray a layer of black paint particles on a white background. However, in a high-temperature environment, the paint particles tend to peel off or burn off. In this paper, we present an approach that uses a novel laser-engraving technology, where the created speckles will sustain temperatures as high as the melting temperature of the specimen. The size, density, depth and distribution of the speckles can be controlled to suit a particular situation. Since the pattern is part of the specimen, it will never disappear, until the melting temperature of the metal is reached. As an application, we used the technique to determine the elastic modulus of Ti up to 600°C and tungsten up to 1000°C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Techniques Springer Journals

A New Method of Creating High-Temperature Speckle Patterns and Its Application in the Determination of the High-Temperature Mechanical Properties of Metals

Loading next page...
 
/lp/springer_journal/a-new-method-of-creating-high-temperature-speckle-patterns-and-its-dNPKvJv6dO
Publisher
Springer Journals
Copyright
Copyright © 2018 by The Society for Experimental Mechanics, Inc
Subject
Materials Science; Characterization and Evaluation of Materials
ISSN
0732-8818
eISSN
1747-1567
D.O.I.
10.1007/s40799-018-0256-z
Publisher site
See Article on Publisher Site

Abstract

Speckle techniques, such as DIC (Digital Image Correlation) and DSP (Digital Speckle Photography), are frequently used to determine the high-temperature mechanical properties of materials. Speckle techniques require the creation of a random speckle pattern on the surface of the specimen. The most commonly used approach to creating a high-contrast speckle pattern is to spray a layer of black paint particles on a white background. However, in a high-temperature environment, the paint particles tend to peel off or burn off. In this paper, we present an approach that uses a novel laser-engraving technology, where the created speckles will sustain temperatures as high as the melting temperature of the specimen. The size, density, depth and distribution of the speckles can be controlled to suit a particular situation. Since the pattern is part of the specimen, it will never disappear, until the melting temperature of the metal is reached. As an application, we used the technique to determine the elastic modulus of Ti up to 600°C and tungsten up to 1000°C.

Journal

Experimental TechniquesSpringer Journals

Published: Jun 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off