A new method for identifying informative genetic markers in selectively bred rats

A new method for identifying informative genetic markers in selectively bred rats Microsatellite length polymorphisms are useful for the mapping of heritable traits in rats. Over 4000 such microsatellites have been characterized for 48 inbred rat strains and used successfully to map phenotypes that differ between strains. At present, however, it is difficult to use this microsatellite database for mapping phenotypes in selectively bred rats of unknown genotype derived from outbred populations because it is not immediately obvious which markers might differ between strains and be informative. We predicted that markers represented by many alleles among the known inbred rat strains would also be most likely to differ between selectively bred strains derived from outbred populations. Here we describe the development and successful application of a new genotyping tool (HUMMER) that assigns “heterozygosity” (Het) and “uncertainty” (Unc) scores to each microsatellite marker that corresponds to its degree of heterozygosity among the 48 genotyped inbred strains. We tested the efficiency of HUMMER on two rat strains that were selectively bred from an outbred Sprague-Dawley stock for either high or low activity in the forced swim test (SwHi rats and SwLo rats, respectively). We found that the markers with high Het and Unc scores allowed the efficient selection of markers that differed between SwHi and SwLo rats, while markers with low Het and Unc scores typically identified markers that did not differ between strains. Thus, picking markers based on Het and Unc scores is a valuable method for identifying informative microsatellite markers in selectively bred rodent strains derived from outbred populations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A new method for identifying informative genetic markers in selectively bred rats

Loading next page...
 
/lp/springer_journal/a-new-method-for-identifying-informative-genetic-markers-in-BhN7BXxU0R
Publisher
Springer-Verlag
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Anatomy; Cell Biology; Zoology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-005-0047-6
Publisher site
See Article on Publisher Site

Abstract

Microsatellite length polymorphisms are useful for the mapping of heritable traits in rats. Over 4000 such microsatellites have been characterized for 48 inbred rat strains and used successfully to map phenotypes that differ between strains. At present, however, it is difficult to use this microsatellite database for mapping phenotypes in selectively bred rats of unknown genotype derived from outbred populations because it is not immediately obvious which markers might differ between strains and be informative. We predicted that markers represented by many alleles among the known inbred rat strains would also be most likely to differ between selectively bred strains derived from outbred populations. Here we describe the development and successful application of a new genotyping tool (HUMMER) that assigns “heterozygosity” (Het) and “uncertainty” (Unc) scores to each microsatellite marker that corresponds to its degree of heterozygosity among the 48 genotyped inbred strains. We tested the efficiency of HUMMER on two rat strains that were selectively bred from an outbred Sprague-Dawley stock for either high or low activity in the forced swim test (SwHi rats and SwLo rats, respectively). We found that the markers with high Het and Unc scores allowed the efficient selection of markers that differed between SwHi and SwLo rats, while markers with low Het and Unc scores typically identified markers that did not differ between strains. Thus, picking markers based on Het and Unc scores is a valuable method for identifying informative microsatellite markers in selectively bred rodent strains derived from outbred populations.

Journal

Mammalian GenomeSpringer Journals

Published: Oct 29, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off