A new laser vorticity probe — LAVOR: Its development and validation in a turbulent boundary layer

A new laser vorticity probe — LAVOR: Its development and validation in a turbulent boundary layer Vorticity measurements, which are scarce at the present time, can provide valuable dynamical information, particularly in unsteady and separated flows. Advances in laser Doppler anemometry and optical techniques have furnished the opportunity for the development of a non-intrusive vorticity probe with very fine spatial and temporal resolutions. The laser vorticity probe (LAVOR), which makes use of minimal laser beams and optical components, is capable of measuring velocity gradients with a separation distances as small as 0.3 mm. Velocity gradients are measured using two points on the same probe volume. However, unlike other techniques, the LAVOR also provides the instantaneous velocity at each point in the probe volume, and so provides additional dynamical information. The LAVOR probe was used in a fully turbulent two-dimensional boundary layer, and the data obtained are compared with the existing hot-wire vorticity data obtained in the same wind tunnel facility and with data obtained in other facilities. The spatial resolution is of the order of three Kolmogorov microscale units. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A new laser vorticity probe — LAVOR: Its development and validation in a turbulent boundary layer

Loading next page...
 
/lp/springer_journal/a-new-laser-vorticity-probe-lavor-its-development-and-validation-in-a-TqdpnevwSL
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluids; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-002-0547-z
Publisher site
See Article on Publisher Site

Abstract

Vorticity measurements, which are scarce at the present time, can provide valuable dynamical information, particularly in unsteady and separated flows. Advances in laser Doppler anemometry and optical techniques have furnished the opportunity for the development of a non-intrusive vorticity probe with very fine spatial and temporal resolutions. The laser vorticity probe (LAVOR), which makes use of minimal laser beams and optical components, is capable of measuring velocity gradients with a separation distances as small as 0.3 mm. Velocity gradients are measured using two points on the same probe volume. However, unlike other techniques, the LAVOR also provides the instantaneous velocity at each point in the probe volume, and so provides additional dynamical information. The LAVOR probe was used in a fully turbulent two-dimensional boundary layer, and the data obtained are compared with the existing hot-wire vorticity data obtained in the same wind tunnel facility and with data obtained in other facilities. The spatial resolution is of the order of three Kolmogorov microscale units.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 19, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off