A new intrusion detection system using support vector machines and hierarchical clustering

A new intrusion detection system using support vector machines and hierarchical clustering Whenever an intrusion occurs, the security and value of a computer system is compromised. Network-based attacks make it difficult for legitimate users to access various network services by purposely occupying or sabotaging network resources and services. This can be done by sending large amounts of network traffic, exploiting well-known faults in networking services, and by overloading network hosts. Intrusion Detection attempts to detect computer attacks by examining various data records observed in processes on the network and it is split into two groups, anomaly detection systems and misuse detection systems. Anomaly detection is an attempt to search for malicious behavior that deviates from established normal patterns. Misuse detection is used to identify intrusions that match known attack scenarios. Our interest here is in anomaly detection and our proposed method is a scalable solution for detecting network-based anomalies. We use Support Vector Machines (SVM) for classification. The SVM is one of the most successful classification algorithms in the data mining area, but its long training time limits its use. This paper presents a study for enhancing the training time of SVM, specifically when dealing with large data sets, using hierarchical clustering analysis. We use the Dynamically Growing Self-Organizing Tree (DGSOT) algorithm for clustering because it has proved to overcome the drawbacks of traditional hierarchical clustering algorithms (e.g., hierarchical agglomerative clustering). Clustering analysis helps find the boundary points, which are the most qualified data points to train SVM, between two classes. We present a new approach of combination of SVM and DGSOT, which starts with an initial training set and expands it gradually using the clustering structure produced by the DGSOT algorithm. We compare our approach with the Rocchio Bundling technique and random selection in terms of accuracy loss and training time gain using a single benchmark real data set. We show that our proposed variations contribute significantly in improving the training process of SVM with high generalization accuracy and outperform the Rocchio Bundling technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A new intrusion detection system using support vector machines and hierarchical clustering

Loading next page...
 
/lp/springer_journal/a-new-intrusion-detection-system-using-support-vector-machines-and-W0jr3LpDK7
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-006-0002-5
Publisher site
See Article on Publisher Site

Abstract

Whenever an intrusion occurs, the security and value of a computer system is compromised. Network-based attacks make it difficult for legitimate users to access various network services by purposely occupying or sabotaging network resources and services. This can be done by sending large amounts of network traffic, exploiting well-known faults in networking services, and by overloading network hosts. Intrusion Detection attempts to detect computer attacks by examining various data records observed in processes on the network and it is split into two groups, anomaly detection systems and misuse detection systems. Anomaly detection is an attempt to search for malicious behavior that deviates from established normal patterns. Misuse detection is used to identify intrusions that match known attack scenarios. Our interest here is in anomaly detection and our proposed method is a scalable solution for detecting network-based anomalies. We use Support Vector Machines (SVM) for classification. The SVM is one of the most successful classification algorithms in the data mining area, but its long training time limits its use. This paper presents a study for enhancing the training time of SVM, specifically when dealing with large data sets, using hierarchical clustering analysis. We use the Dynamically Growing Self-Organizing Tree (DGSOT) algorithm for clustering because it has proved to overcome the drawbacks of traditional hierarchical clustering algorithms (e.g., hierarchical agglomerative clustering). Clustering analysis helps find the boundary points, which are the most qualified data points to train SVM, between two classes. We present a new approach of combination of SVM and DGSOT, which starts with an initial training set and expands it gradually using the clustering structure produced by the DGSOT algorithm. We compare our approach with the Rocchio Bundling technique and random selection in terms of accuracy loss and training time gain using a single benchmark real data set. We show that our proposed variations contribute significantly in improving the training process of SVM with high generalization accuracy and outperform the Rocchio Bundling technique.

Journal

The VLDB JournalSpringer Journals

Published: Oct 1, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off