A new intrusion detection system using support vector machines and hierarchical clustering

A new intrusion detection system using support vector machines and hierarchical clustering Whenever an intrusion occurs, the security and value of a computer system is compromised. Network-based attacks make it difficult for legitimate users to access various network services by purposely occupying or sabotaging network resources and services. This can be done by sending large amounts of network traffic, exploiting well-known faults in networking services, and by overloading network hosts. Intrusion Detection attempts to detect computer attacks by examining various data records observed in processes on the network and it is split into two groups, anomaly detection systems and misuse detection systems. Anomaly detection is an attempt to search for malicious behavior that deviates from established normal patterns. Misuse detection is used to identify intrusions that match known attack scenarios. Our interest here is in anomaly detection and our proposed method is a scalable solution for detecting network-based anomalies. We use Support Vector Machines (SVM) for classification. The SVM is one of the most successful classification algorithms in the data mining area, but its long training time limits its use. This paper presents a study for enhancing the training time of SVM, specifically when dealing with large data sets, using hierarchical clustering analysis. We use the Dynamically Growing Self-Organizing Tree (DGSOT) algorithm for clustering because it has proved to overcome the drawbacks of traditional hierarchical clustering algorithms (e.g., hierarchical agglomerative clustering). Clustering analysis helps find the boundary points, which are the most qualified data points to train SVM, between two classes. We present a new approach of combination of SVM and DGSOT, which starts with an initial training set and expands it gradually using the clustering structure produced by the DGSOT algorithm. We compare our approach with the Rocchio Bundling technique and random selection in terms of accuracy loss and training time gain using a single benchmark real data set. We show that our proposed variations contribute significantly in improving the training process of SVM with high generalization accuracy and outperform the Rocchio Bundling technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A new intrusion detection system using support vector machines and hierarchical clustering

Loading next page...
Copyright © 2007 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial