A new green technology: hydrothermal electrolysis for the treatment of biodiesel wastewater

A new green technology: hydrothermal electrolysis for the treatment of biodiesel wastewater Recently, biodiesel has become more attractive as an alternative diesel fuel because it is renewable, biodegradable, non-toxic, and environmentally friendly. In this study, we have developed a new green process called “hydrothermal electrolysis”, by which industrial wastewater can be converted to more value-added chemicals under high-temperature and high-pressure aqueous conditions. We prepared model biodiesel wastewater and carried out hydrothermal electrolysis experiments by using both a continuous flow reactor and a batch autoclave. Current efficiencies and the effects of reaction time and reaction temperature on the decomposition of biodiesel wastewater and removal of total organic carbon (TOC) were investigated under various operating conditions. It was found that conversions of both TOC and glycerol inside the model biodiesel wastewater increased with increasing applied current. With the autoclave, the maximum glycerol conversion was recorded as 83% by applying 1 A current at 250 °C, whereas with the flow reactor, 75% of glycerol was converted into gas and liquid products under the effect of 1 A current for 60 min at a reaction temperature of 280 °C. In the case of TOC removal from the liquid product solution, under identical conditions, it was found that 23 and 15.9% TOC conversions were achieved by the batch and continuous flow reactors, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

A new green technology: hydrothermal electrolysis for the treatment of biodiesel wastewater

Loading next page...
 
/lp/springer_journal/a-new-green-technology-hydrothermal-electrolysis-for-the-treatment-of-07CS8uagj7
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry ; Catalysis; Physical Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0260-8
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial