A new gene (rmSTG) specific for taste buds is found by laser capture microdissection

A new gene (rmSTG) specific for taste buds is found by laser capture microdissection Getting pure populations of taste buds suitable for molecular analysis has hampered the characterization of genes specifically expressed in taste cells. To solve this problem, we prepared specific cDNA libraries from small numbers of taste cells and surrounding epithelium isolated by laser capture microdissection (LCM) and report the discovery of a rhesus monkey novel gene (rmSTG) expressed specifically in taste cells, as found by differential screening of the cDNA libraries and RNA in situ hybridization. RNA in situ hybridization shows the preferential expression of this gene in taste buds from circumvallate, foliate, and fungiform papillae of the tongue. RT-PCR and Northern analysis of RNA from different non-taste organs showed no expression, pointing to a very specialized function of the protein in taste cells. Analysis of extended cDNAs and genomic DNA showed two exons and one intron. Northern analysis of circumvallate papillae showed a transcript of 1.3 kb as established in the gene model. BLAST search analysis showed that the human homolog is localized in the recently completely sequenced HLA class I region of Chromosome 6p21 and is sublocalized to the main susceptibility region for psoriasis vulgaris. The predicted gene encodes a protein of 314 amino acids with an N-terminal signal peptide and cleavage site, suggesting a membrane-bound or secreted protein with an extracellular role in taste cell physiology. The monkey, human, and mouse STG proteins contain potential O-glycosylation sites and tandem repeats inside a region showing ∼50% similarity with prion proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A new gene (rmSTG) specific for taste buds is found by laser capture microdissection

Loading next page...
 
/lp/springer_journal/a-new-gene-rmstg-specific-for-taste-buds-is-found-by-laser-capture-01fPidru9N
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010227
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial