A new energy conservation scheme for the numeric study of the heat transfer in profile extrusion calibration

A new energy conservation scheme for the numeric study of the heat transfer in profile extrusion... In this work, a new second-order conservative finite volume scheme using the cell-to-vertex interpolation is proposed to solve the heat transfer problem involving discontinuous solution and discontinuous materials properties. We apply the method to a thermoplastic extrusion process where a dry calibration is used to cool down a polymer tape. One of the major difficulties in the modelling is to prescribe the adequate value for the heat transfer coefficient between the polymer and the calibrator. To this end, we define an optimization procedure coupled with the new finite volume method to evaluate the heat transfer coefficient at the polymer–calibrator interface from experimental data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Heat and Mass Transfer Springer Journals

A new energy conservation scheme for the numeric study of the heat transfer in profile extrusion calibration

Loading next page...
 
/lp/springer_journal/a-new-energy-conservation-scheme-for-the-numeric-study-of-the-heat-aSlufGNBI6
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Industrial Chemistry/Chemical Engineering; Thermodynamics
ISSN
0947-7411
eISSN
1432-1181
D.O.I.
10.1007/s00231-017-2023-6
Publisher site
See Article on Publisher Site

Abstract

In this work, a new second-order conservative finite volume scheme using the cell-to-vertex interpolation is proposed to solve the heat transfer problem involving discontinuous solution and discontinuous materials properties. We apply the method to a thermoplastic extrusion process where a dry calibration is used to cool down a polymer tape. One of the major difficulties in the modelling is to prescribe the adequate value for the heat transfer coefficient between the polymer and the calibrator. To this end, we define an optimization procedure coupled with the new finite volume method to evaluate the heat transfer coefficient at the polymer–calibrator interface from experimental data.

Journal

Heat and Mass TransferSpringer Journals

Published: Apr 3, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off