A New Characterization of the Continuous Functions on a Locale

A New Characterization of the Continuous Functions on a Locale Within the category W of archimedean lattice-ordered groups with weak order unit, we show that the objects of the form C(L), the set of continuous real-valued functions on a locale L, are precisely those which are divisible and complete with respect to a variant of uniform convergence, here termed indicated uniform convergence. We construct the corresponding completion of a W-object A purely algebraically in terms of Cauchy sequences. This completion can be variously described as c 3 A, the ``closed under countable composition hull of A,'' as C(Y l A), where Y l A is the Yosida locale of A, and as the largest essential reflection of A. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

A New Characterization of the Continuous Functions on a Locale

Loading next page...
 
/lp/springer_journal/a-new-characterization-of-the-continuous-functions-on-a-locale-2R1tv4pypy
Publisher
Birkhäuser-Verlag
Copyright
Copyright © 2006 by Birkhäuser Verlag, Basel
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-005-5826-5
Publisher site
See Article on Publisher Site

Abstract

Within the category W of archimedean lattice-ordered groups with weak order unit, we show that the objects of the form C(L), the set of continuous real-valued functions on a locale L, are precisely those which are divisible and complete with respect to a variant of uniform convergence, here termed indicated uniform convergence. We construct the corresponding completion of a W-object A purely algebraically in terms of Cauchy sequences. This completion can be variously described as c 3 A, the ``closed under countable composition hull of A,'' as C(Y l A), where Y l A is the Yosida locale of A, and as the largest essential reflection of A.

Journal

PositivitySpringer Journals

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off