A New Approach to Linearly Perturbed Riccati Equations Arising in Stochastic Control

A New Approach to Linearly Perturbed Riccati Equations Arising in Stochastic Control In this paper a linearly perturbed version of the well-known matrix Riccati equations which arise in certain stochastic optimal control problems is studied. Via the concepts of mean square stabilizability and mean square detectability we improve previous results on both the convergence properties of the linearly perturbed Riccati differential equation and the solutions of the linearly perturbed algebraic Riccati equation. Furthermore, our approach unifies, in some way, the study for this class of Riccati equations with the one for classical theory, by eliminating a certain inconvenient assumption used in previous works (e.g., [10] and [26]). The results are derived under relatively weaker assumptions and include, inter alia, the following: (a) An extension of Theorem 4.1 of [26] to handle systems not necessarily observable. (b) The existence of a strong solution, subject only to the mean square stabilizability assumption. (c) Conditions for the existence and uniqueness of stabilizing solutions for systems not necessarily detectable. (d) Conditions for the existence and uniqueness of mean square stabilizing solutions instead of just stabilizing. (e) Relaxing the assumptions for convergence of the solution of the linearly perturbed Riccati differential equation and deriving new convergence results for systems not necessarily observable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

A New Approach to Linearly Perturbed Riccati Equations Arising in Stochastic Control

Loading next page...
 
/lp/springer_journal/a-new-approach-to-linearly-perturbed-riccati-equations-arising-in-DGqdEOzaxW
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s002459900070
Publisher site
See Article on Publisher Site

Abstract

In this paper a linearly perturbed version of the well-known matrix Riccati equations which arise in certain stochastic optimal control problems is studied. Via the concepts of mean square stabilizability and mean square detectability we improve previous results on both the convergence properties of the linearly perturbed Riccati differential equation and the solutions of the linearly perturbed algebraic Riccati equation. Furthermore, our approach unifies, in some way, the study for this class of Riccati equations with the one for classical theory, by eliminating a certain inconvenient assumption used in previous works (e.g., [10] and [26]). The results are derived under relatively weaker assumptions and include, inter alia, the following: (a) An extension of Theorem 4.1 of [26] to handle systems not necessarily observable. (b) The existence of a strong solution, subject only to the mean square stabilizability assumption. (c) Conditions for the existence and uniqueness of stabilizing solutions for systems not necessarily detectable. (d) Conditions for the existence and uniqueness of mean square stabilizing solutions instead of just stabilizing. (e) Relaxing the assumptions for convergence of the solution of the linearly perturbed Riccati differential equation and deriving new convergence results for systems not necessarily observable.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Jun 1, 2006

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off