A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor

A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor Biofilm process is widely used for the treatment of a variety of wastewater especially containing slowly biodegradable substances. It provides resistance against toxic environment and is capable of retaining biomass under continuous operation. Development of kinetics is very much pertinent for rational design of a biofilm process for the treatment of wastewater with or without inhibitory substances. A simple approach for development of such kinetics for an aerobic biofilm reactor has been presented using a novel biofilm model. The said biofilm model is formulated from the correlations between substrate concentrations in the influent/effluent and at biofilm liquid interface along with substrate flux and biofilm thickness complying Monod’s growth kinetics. The methodology for determining the kinetic coefficients for substrate removal and biomass growth has been demonstrated stepwise along with graphical representations. Kinetic coefficients like K, k, Y, b t, b s, and b d are determined either from the intercepts of X- and Y-axis or from the slope of the graphical plots. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Water Science Springer Journals

A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor

Loading next page...
 
/lp/springer_journal/a-new-approach-for-development-of-kinetics-of-wastewater-treatment-in-y0jYfrEOSE
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by The Author(s)
Subject
Earth Sciences; Hydrogeology; Water Industry/Water Technologies; Industrial and Production Engineering; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution; Nanotechnology; Private International Law, International & Foreign Law, Comparative Law
ISSN
2190-5487
eISSN
2190-5495
D.O.I.
10.1007/s13201-016-0389-0
Publisher site
See Article on Publisher Site

Abstract

Biofilm process is widely used for the treatment of a variety of wastewater especially containing slowly biodegradable substances. It provides resistance against toxic environment and is capable of retaining biomass under continuous operation. Development of kinetics is very much pertinent for rational design of a biofilm process for the treatment of wastewater with or without inhibitory substances. A simple approach for development of such kinetics for an aerobic biofilm reactor has been presented using a novel biofilm model. The said biofilm model is formulated from the correlations between substrate concentrations in the influent/effluent and at biofilm liquid interface along with substrate flux and biofilm thickness complying Monod’s growth kinetics. The methodology for determining the kinetic coefficients for substrate removal and biomass growth has been demonstrated stepwise along with graphical representations. Kinetic coefficients like K, k, Y, b t, b s, and b d are determined either from the intercepts of X- and Y-axis or from the slope of the graphical plots.

Journal

Applied Water ScienceSpringer Journals

Published: Feb 18, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off