A neurophysiological explanation for biases in visual localization

A neurophysiological explanation for biases in visual localization Observers show small but systematic deviations from equal weighting of all elements when asked to localize the center of an array of dots. Counter-intuitively, with small numbers of dots drawn from a Gaussian distribution, this bias results in subjects overweighting the influence of outlier dots – inconsistent with traditional statistical estimators of central tendency. Here we show that this apparent statistical anomaly can be explained by the observation that outlier dots also lie in regions of lower dot density. Using a standard model of V1 processing, which includes spatial integration followed by a compressive static nonlinearity, we can successfully predict the finding that dots in less dense regions of an array have a relatively greater influence on the perceived center. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Attention, Perception, & Psychophysics Springer Journals

A neurophysiological explanation for biases in visual localization

Loading next page...
 
/lp/springer_journal/a-neurophysiological-explanation-for-biases-in-visual-localization-Ji1IV9j0js
Publisher
Springer US
Copyright
Copyright © 2016 by The Psychonomic Society, Inc.
Subject
Psychology; Cognitive Psychology
ISSN
1943-3921
eISSN
1943-393X
D.O.I.
10.3758/s13414-016-1251-z
Publisher site
See Article on Publisher Site

Abstract

Observers show small but systematic deviations from equal weighting of all elements when asked to localize the center of an array of dots. Counter-intuitively, with small numbers of dots drawn from a Gaussian distribution, this bias results in subjects overweighting the influence of outlier dots – inconsistent with traditional statistical estimators of central tendency. Here we show that this apparent statistical anomaly can be explained by the observation that outlier dots also lie in regions of lower dot density. Using a standard model of V1 processing, which includes spatial integration followed by a compressive static nonlinearity, we can successfully predict the finding that dots in less dense regions of an array have a relatively greater influence on the perceived center.

Journal

Attention, Perception, & PsychophysicsSpringer Journals

Published: Dec 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off