A Neural Network Approach for Analyzing Small Business Lending Decisions

A Neural Network Approach for Analyzing Small Business Lending Decisions In this paper, we apply the neural network method to small business lending decisions. We use the neural network to classify the loan applications into the groups of acceptance or rejection, and compare the model results with the actual decisions made by loan officers. Data were collected from a leading bank in Central New York. The sample contains important financial statement and business information of borrowers and the loan officers' decisions. We conduct the network training on the data sample and find that the neural network has a stronger discriminating power for classifying the acceptance and rejection groups than traditional parametric and nonparametric classifiers. The results show that the neural network model has a high predictive ability. Our findings suggest that neural networks can be a very useful tool for enhancing small-business lending decisions and reducing loan processing time and costs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

A Neural Network Approach for Analyzing Small Business Lending Decisions

Loading next page...
 
/lp/springer_journal/a-neural-network-approach-for-analyzing-small-business-lending-stixInl8jj
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1023/A:1008324023422
Publisher site
See Article on Publisher Site

Abstract

In this paper, we apply the neural network method to small business lending decisions. We use the neural network to classify the loan applications into the groups of acceptance or rejection, and compare the model results with the actual decisions made by loan officers. Data were collected from a leading bank in Central New York. The sample contains important financial statement and business information of borrowers and the loan officers' decisions. We conduct the network training on the data sample and find that the neural network has a stronger discriminating power for classifying the acceptance and rejection groups than traditional parametric and nonparametric classifiers. The results show that the neural network model has a high predictive ability. Our findings suggest that neural networks can be a very useful tool for enhancing small-business lending decisions and reducing loan processing time and costs.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Oct 8, 2004

References

  • Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy
    Altman, E. `.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off