A Neural Network Approach for Analyzing Small Business Lending Decisions

A Neural Network Approach for Analyzing Small Business Lending Decisions In this paper, we apply the neural network method to small business lending decisions. We use the neural network to classify the loan applications into the groups of acceptance or rejection, and compare the model results with the actual decisions made by loan officers. Data were collected from a leading bank in Central New York. The sample contains important financial statement and business information of borrowers and the loan officers' decisions. We conduct the network training on the data sample and find that the neural network has a stronger discriminating power for classifying the acceptance and rejection groups than traditional parametric and nonparametric classifiers. The results show that the neural network model has a high predictive ability. Our findings suggest that neural networks can be a very useful tool for enhancing small-business lending decisions and reducing loan processing time and costs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

A Neural Network Approach for Analyzing Small Business Lending Decisions

Loading next page...
 
/lp/springer_journal/a-neural-network-approach-for-analyzing-small-business-lending-stixInl8jj
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1023/A:1008324023422
Publisher site
See Article on Publisher Site

Abstract

In this paper, we apply the neural network method to small business lending decisions. We use the neural network to classify the loan applications into the groups of acceptance or rejection, and compare the model results with the actual decisions made by loan officers. Data were collected from a leading bank in Central New York. The sample contains important financial statement and business information of borrowers and the loan officers' decisions. We conduct the network training on the data sample and find that the neural network has a stronger discriminating power for classifying the acceptance and rejection groups than traditional parametric and nonparametric classifiers. The results show that the neural network model has a high predictive ability. Our findings suggest that neural networks can be a very useful tool for enhancing small-business lending decisions and reducing loan processing time and costs.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Oct 8, 2004

References

  • Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy
    Altman, E. `.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off