A multiple network approach to corporate governance

A multiple network approach to corporate governance In this work, we consider corporate governance (CG) ties among companies from a multiple network perspective. Such a structure naturally arises from the close interrelation between the Shareholding network and the Board of Directors network. In order to capture the simultaneous effects of both networks on CG, we propose to model the CG multiple network structure via tensor analysis. In particular, we consider the TOPHITS model, based on the PARAFAC tensor decomposition, to show that tensor techniques can be successfully applied in this context. By providing some empirical results from the Italian financial market in the univariate case, we then show that a tensor–based multiple network approach can reveal important information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

A multiple network approach to corporate governance

Loading next page...
 
/lp/springer_journal/a-multiple-network-approach-to-corporate-governance-OGNFJf4l0U
Publisher
Springer Journals
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-014-0075-y
Publisher site
See Article on Publisher Site

Abstract

In this work, we consider corporate governance (CG) ties among companies from a multiple network perspective. Such a structure naturally arises from the close interrelation between the Shareholding network and the Board of Directors network. In order to capture the simultaneous effects of both networks on CG, we propose to model the CG multiple network structure via tensor analysis. In particular, we consider the TOPHITS model, based on the PARAFAC tensor decomposition, to show that tensor techniques can be successfully applied in this context. By providing some empirical results from the Italian financial market in the univariate case, we then show that a tensor–based multiple network approach can reveal important information.

Journal

Quality & QuantitySpringer Journals

Published: Jul 30, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off