A multiparty error-correcting method for quantum secret sharing

A multiparty error-correcting method for quantum secret sharing Quantum secret sharing (QSS) refers to the process in which the secret is divided into several sub-secrets and sent to different users utilizing quantum technology. Only the user belonging to a specific subset (authorized set) can reconstruct the initial secret correctly. In principle, the authorized set can regain the initial secret exactly via sub-secrets. However, when realizing QSS in practice, because of the interference of various noises, the secret obtained by the authorized set may not be consistent with the initial one. For a particular kind of QSS protocols, in which the bitwise XOR of sub-secrets is equal to the initial secret theoretically, we propose a feasible multiparty error-correcting method based on binary search technique and two-party Cascade error-correcting method. With this method, we can solve the problem that the authorized set cannot regain the initial secret correctly. Finally, we analyze the optimal block length, the amount of leaked information, and realize tripartite error-correcting method by experimental simulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

A multiparty error-correcting method for quantum secret sharing

Loading next page...
 
/lp/springer_journal/a-multiparty-error-correcting-method-for-quantum-secret-sharing-nrH4OK8V6S
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-013-0716-4
Publisher site
See Article on Publisher Site

Abstract

Quantum secret sharing (QSS) refers to the process in which the secret is divided into several sub-secrets and sent to different users utilizing quantum technology. Only the user belonging to a specific subset (authorized set) can reconstruct the initial secret correctly. In principle, the authorized set can regain the initial secret exactly via sub-secrets. However, when realizing QSS in practice, because of the interference of various noises, the secret obtained by the authorized set may not be consistent with the initial one. For a particular kind of QSS protocols, in which the bitwise XOR of sub-secrets is equal to the initial secret theoretically, we propose a feasible multiparty error-correcting method based on binary search technique and two-party Cascade error-correcting method. With this method, we can solve the problem that the authorized set cannot regain the initial secret correctly. Finally, we analyze the optimal block length, the amount of leaked information, and realize tripartite error-correcting method by experimental simulation.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 17, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off