A multiobjective sensor placement optimization for SHM systems considering Fisher information matrix and mode shape interpolation

A multiobjective sensor placement optimization for SHM systems considering Fisher information... Sensor placement optimization plays a key role in structural health monitoring (SHM) of large mechanical structures. Given the existence of an effective damage identification procedure, the problem arises as to how the acquisition points should be placed for optimal efficiency of the detection system. The global multiobjective optimization of sensor locations for structural health monitoring systems is studied in this paper. First, a laminated composite plate is modelled using Finite Element Method (FEM) and put into modal analysis. Then, multiobjective genetic algorithms (GAs) are adopted to search for the optimal locations of sensors. Numerical issues arising in the selection of the optimal sensor configuration in structural dynamics are addressed. A method of multiobjective sensor locations optimization using the collected information by Fisher Information Matrix (FIM) and mode shape interpolation is presented in this paper. The sensor locations are prioritized according to their ability to localize structural damage based on the eigenvector sensitivity method. The proposed method presented in this paper allows to distribute the points of acquisition on a structure in the best possible way so as to obtain both data of greater modal information and data for better modal reconstruction from a minimum point interpolation. Numerical example and http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering with Computers Springer Journals

A multiobjective sensor placement optimization for SHM systems considering Fisher information matrix and mode shape interpolation

Loading next page...
 
/lp/springer_journal/a-multiobjective-sensor-placement-optimization-for-shm-systems-cZct2HBDM0
Publisher
Springer London
Copyright
Copyright © 2018 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Computer Science; Computer-Aided Engineering (CAD, CAE) and Design; Math. Applications in Chemistry; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Classical Mechanics; Mathematical and Computational Engineering
ISSN
0177-0667
eISSN
1435-5663
D.O.I.
10.1007/s00366-018-0613-7
Publisher site
See Article on Publisher Site

Abstract

Sensor placement optimization plays a key role in structural health monitoring (SHM) of large mechanical structures. Given the existence of an effective damage identification procedure, the problem arises as to how the acquisition points should be placed for optimal efficiency of the detection system. The global multiobjective optimization of sensor locations for structural health monitoring systems is studied in this paper. First, a laminated composite plate is modelled using Finite Element Method (FEM) and put into modal analysis. Then, multiobjective genetic algorithms (GAs) are adopted to search for the optimal locations of sensors. Numerical issues arising in the selection of the optimal sensor configuration in structural dynamics are addressed. A method of multiobjective sensor locations optimization using the collected information by Fisher Information Matrix (FIM) and mode shape interpolation is presented in this paper. The sensor locations are prioritized according to their ability to localize structural damage based on the eigenvector sensitivity method. The proposed method presented in this paper allows to distribute the points of acquisition on a structure in the best possible way so as to obtain both data of greater modal information and data for better modal reconstruction from a minimum point interpolation. Numerical example and

Journal

Engineering with ComputersSpringer Journals

Published: May 28, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off