A multi-responsive gene encoding 1-aminocyclopropane-1- carboxylate synthase (ACS6) in mature Arabidopsis leaves

A multi-responsive gene encoding 1-aminocyclopropane-1- carboxylate synthase (ACS6) in mature... Physiological and biochemical studies have provided evidence that mechanical strain (touch)-induced modifications in plant growth and development may be due to ethylene. In order to better understand the involvement of ethylene in touch-induced responses, we identified and characterized an Arabidopsis cDNA (ACS6) encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase which is an important regulatory enzyme in the ethylene biosynthetic pathway. Northern analysis showed that ACS6 was induced by touch in the leaves of 3-week old light-grown plants within 5 min and reached maximum transcription at 15 min. ACC, which is the product of ACC synthase and the immediate precursor to ethylene, exhibited a dramatic rise between 15 and 30 min after touch stimulation. Experiments with multiple touch treatments showed that a saturation in gene expression was obtained with one touch treatment and subsequent touch stimulations were progressively less effective in promoting ACS6 expression. Additional characterization of ACS6 gene expression indicated that the gene is also induced by wounding, and by treatment with LiCl, NaCl, CuCl2, auxin, cycloheximide (CHX), aminooxyacetic acid (AOA) and ethylene. ACC levels were also increased in response to each of these treatments with the exception of CHX and AOA which resulted in a decrease and no effect, respectively. Our results show that ACS6 is rapidly turned on in response to touch which is followed by an increase in ACC which is the immediate precursor to ethylene, thereby providing evidence that it is responsible for touch-inducible ethylene production in light-grown Arabidopsis plants. The identification and characterization of ACS6 now provides us with a tool to better understand the involvement of ethylene produced in response to external stimuli as well as during plant growth and development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A multi-responsive gene encoding 1-aminocyclopropane-1- carboxylate synthase (ACS6) in mature Arabidopsis leaves

Loading next page...
Kluwer Academic Publishers
Copyright © 1999 by Kluwer Academic Publishers
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial