A multi-resolution and adaptive 3-D image denoising framework with applications in medical imaging

A multi-resolution and adaptive 3-D image denoising framework with applications in medical imaging Due to recent increase in the usage of 3-D magnetic resonance images (MRI) and analysis of functional magnetic resonance images, research on 3-D image processing becomes important. Observed 3-D images often contain noise which should be removed in such a way that important image features, e.g., edges, edge structures, and other image details should be preserved, so that subsequent image analyses are reliable. Most image denoising methods in the literature are for 2-D images. However, their direct generalizations to 3-D images cannot preserve complicated edge structures well. Because, the edge structures in a 3-D edge surface can be much more complicated than the edge structures in a 2-D edge curve. Moreover, the amount of smoothing should be determined locally, depending on local image features and local signal to noise ratio, which is much more challenging in 3-D images due to large number of voxels. This paper proposes an efficient 3-D image denoising procedure based on local clustering of the voxels. This method provides a framework for determining the size of bandwidth and the amount of smoothing locally by empirical procedures. Numerical studies and a real MRI denoising show that it works well in many medical image denoising problems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Signal, Image and Video Processing" Springer Journals

A multi-resolution and adaptive 3-D image denoising framework with applications in medical imaging

Loading next page...
 
/lp/springer_journal/a-multi-resolution-and-adaptive-3-d-image-denoising-framework-with-I56quh63ux
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Signal,Image and Speech Processing; Image Processing and Computer Vision; Computer Imaging, Vision, Pattern Recognition and Graphics; Multimedia Information Systems
ISSN
1863-1703
eISSN
1863-1711
D.O.I.
10.1007/s11760-017-1096-5
Publisher site
See Article on Publisher Site

Abstract

Due to recent increase in the usage of 3-D magnetic resonance images (MRI) and analysis of functional magnetic resonance images, research on 3-D image processing becomes important. Observed 3-D images often contain noise which should be removed in such a way that important image features, e.g., edges, edge structures, and other image details should be preserved, so that subsequent image analyses are reliable. Most image denoising methods in the literature are for 2-D images. However, their direct generalizations to 3-D images cannot preserve complicated edge structures well. Because, the edge structures in a 3-D edge surface can be much more complicated than the edge structures in a 2-D edge curve. Moreover, the amount of smoothing should be determined locally, depending on local image features and local signal to noise ratio, which is much more challenging in 3-D images due to large number of voxels. This paper proposes an efficient 3-D image denoising procedure based on local clustering of the voxels. This method provides a framework for determining the size of bandwidth and the amount of smoothing locally by empirical procedures. Numerical studies and a real MRI denoising show that it works well in many medical image denoising problems.

Journal

"Signal, Image and Video Processing"Springer Journals

Published: Apr 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off