A multi-ranker model for adaptive XML searching

A multi-ranker model for adaptive XML searching The evolution of computing technology suggests that it has become more feasible to offer access to Web information in a ubiquitous way, through various kinds of interaction devices such as PCs, laptops, palmtops, and so on. As XML has become a de-facto standard for exchanging Web data, an interesting and practical research problem is the development of models and techniques to satisfy various needs and preferences in searching XML data. In this paper, we employ a list of simple XML tagged keywords as a vehicle for searching XML fragments in a collection of XML documents. In order to deal with the diversified nature of XML documents as well as user preferences, we propose a novel multi-ranker model (MRM), which is able to abstract a spectrum of important XML properties and adapt the features to different XML search needs. The MRM is composed of three ranking levels. The lowest level consists of two categories of similarity and granularity features. At the intermediate level, we define four tailored XML rankers (XRs), which consist of different lower level features and have different strengths in searching XML fragments. The XRs are trained via a learning mechanism called the Ranking Support Vector Machine in a voting Spy Naïve Bayes framework (RSSF). The RSSF takes as input a set of labeled fragments and feature vectors and generates as output Adaptive Rankers (ARs) in the learning process. The ARs are defined over the XRs and generated at the top level of the MRM. We show empirically that the RSSF is able to improve the MRM significantly in the learning process that needs only a small set of training XML fragments. We demonstrate that the trained MRM is able to bring out the strengths of the XRs in order to adapt different preferences and queries. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

A multi-ranker model for adaptive XML searching

Loading next page...
 
/lp/springer_journal/a-multi-ranker-model-for-adaptive-xml-searching-BnafQCTr4h
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-007-0068-8
Publisher site
See Article on Publisher Site

Abstract

The evolution of computing technology suggests that it has become more feasible to offer access to Web information in a ubiquitous way, through various kinds of interaction devices such as PCs, laptops, palmtops, and so on. As XML has become a de-facto standard for exchanging Web data, an interesting and practical research problem is the development of models and techniques to satisfy various needs and preferences in searching XML data. In this paper, we employ a list of simple XML tagged keywords as a vehicle for searching XML fragments in a collection of XML documents. In order to deal with the diversified nature of XML documents as well as user preferences, we propose a novel multi-ranker model (MRM), which is able to abstract a spectrum of important XML properties and adapt the features to different XML search needs. The MRM is composed of three ranking levels. The lowest level consists of two categories of similarity and granularity features. At the intermediate level, we define four tailored XML rankers (XRs), which consist of different lower level features and have different strengths in searching XML fragments. The XRs are trained via a learning mechanism called the Ranking Support Vector Machine in a voting Spy Naïve Bayes framework (RSSF). The RSSF takes as input a set of labeled fragments and feature vectors and generates as output Adaptive Rankers (ARs) in the learning process. The ARs are defined over the XRs and generated at the top level of the MRM. We show empirically that the RSSF is able to improve the MRM significantly in the learning process that needs only a small set of training XML fragments. We demonstrate that the trained MRM is able to bring out the strengths of the XRs in order to adapt different preferences and queries.

Journal

The VLDB JournalSpringer Journals

Published: Jan 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off