A Multi-label Classifier for Prediction Membrane Protein Functional Types in Animal

A Multi-label Classifier for Prediction Membrane Protein Functional Types in Animal Membrane protein is an important composition of cell membrane. Given a membrane protein sequence, how can we identify its type(s) is very important because the type keeps a close correlation with its functions. According to previous studies, membrane protein can be divided into the following eight types: single-pass type I, single-pass type II, single-pass type III, single-pass type IV, multipass, lipid-anchor, GPI-anchor, peripheral membrane protein. With the avalanche of newly found protein sequences in the post-genomic age, it is urgent to develop an automatic and effective computational method to rapid and reliable prediction of the types of membrane proteins. At present, most of the existing methods were based on the assumption that one membrane protein only belongs to one type. Actually, a membrane protein may simultaneously exist at two or more different functional types. In this study, a new method by hybridizing the pseudo amino acid composition with multi-label algorithm called LIFT (multi-label learning with label-specific features) was proposed to predict the functional types both singleplex and multiplex animal membrane proteins. Experimental result on a stringent benchmark dataset of membrane proteins by jackknife test show that the absolute-true obtained was 0.6342, indicating that our approach is quite promising. It may become a useful high-through tool, or at least play a complementary role to the existing predictors in identifying functional types of membrane proteins. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

A Multi-label Classifier for Prediction Membrane Protein Functional Types in Animal

Loading next page...
 
/lp/springer_journal/a-multi-label-classifier-for-prediction-membrane-protein-functional-dasOB5SC0w
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-014-9708-2
Publisher site
See Article on Publisher Site

Abstract

Membrane protein is an important composition of cell membrane. Given a membrane protein sequence, how can we identify its type(s) is very important because the type keeps a close correlation with its functions. According to previous studies, membrane protein can be divided into the following eight types: single-pass type I, single-pass type II, single-pass type III, single-pass type IV, multipass, lipid-anchor, GPI-anchor, peripheral membrane protein. With the avalanche of newly found protein sequences in the post-genomic age, it is urgent to develop an automatic and effective computational method to rapid and reliable prediction of the types of membrane proteins. At present, most of the existing methods were based on the assumption that one membrane protein only belongs to one type. Actually, a membrane protein may simultaneously exist at two or more different functional types. In this study, a new method by hybridizing the pseudo amino acid composition with multi-label algorithm called LIFT (multi-label learning with label-specific features) was proposed to predict the functional types both singleplex and multiplex animal membrane proteins. Experimental result on a stringent benchmark dataset of membrane proteins by jackknife test show that the absolute-true obtained was 0.6342, indicating that our approach is quite promising. It may become a useful high-through tool, or at least play a complementary role to the existing predictors in identifying functional types of membrane proteins.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Aug 9, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off