A moments-based algorithm for optimizing the information mined in post-processing spray images

A moments-based algorithm for optimizing the information mined in post-processing spray images The Moments-algorithm was developed to post-process images of sprays with the aim of characterizing the sprays’ complex features (e.g., trajectory, dispersions and dynamics) in terms of simple curves, which can be used for developing correlation models and design tools. To achieve this objective, the algorithm calculates the first moments of pixel intensity values in instantaneous images of the spray to determine its center-of-gravity (CG) trajectory (i.e., the spray density-weighted centerline trajectory). Thereafter, the second moments (i.e., standard-deviations, σ) of intensities are calculated to describe the dispersion of spray materials around the CG. After the instantaneous CG's and σ's for the instantaneous images have been obtained, they are arithmetically averaged to produce the average spray trajectories and dispersions. Additionally, the second moments of instantaneous CG's are used to characterize the spray’s fluctuation magnitude. The Moments-algorithm has three main advantages over threshold-based edge-tracking and other conventional post-processing approaches: (1) It simultaneously describes the spray’s instantaneous and average trajectories, dispersions and fluctuations, instead of just the outer/inner-edges, (2) the use of moments to define these spray characteristics is more physically meaningful because they reflect the statistical distribution of droplets within the spray plume instead of relying on an artificially interpreted “edge”, and (3) the use of moments decreases the uncertainties of the post-processed results because moments are mathematically defined and do not depend upon user-adjustments/interpretations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

A moments-based algorithm for optimizing the information mined in post-processing spray images

Loading next page...
 
/lp/springer_journal/a-moments-based-algorithm-for-optimizing-the-information-mined-in-post-0Hsl9klor2
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-2102-8
Publisher site
See Article on Publisher Site

Abstract

The Moments-algorithm was developed to post-process images of sprays with the aim of characterizing the sprays’ complex features (e.g., trajectory, dispersions and dynamics) in terms of simple curves, which can be used for developing correlation models and design tools. To achieve this objective, the algorithm calculates the first moments of pixel intensity values in instantaneous images of the spray to determine its center-of-gravity (CG) trajectory (i.e., the spray density-weighted centerline trajectory). Thereafter, the second moments (i.e., standard-deviations, σ) of intensities are calculated to describe the dispersion of spray materials around the CG. After the instantaneous CG's and σ's for the instantaneous images have been obtained, they are arithmetically averaged to produce the average spray trajectories and dispersions. Additionally, the second moments of instantaneous CG's are used to characterize the spray’s fluctuation magnitude. The Moments-algorithm has three main advantages over threshold-based edge-tracking and other conventional post-processing approaches: (1) It simultaneously describes the spray’s instantaneous and average trajectories, dispersions and fluctuations, instead of just the outer/inner-edges, (2) the use of moments to define these spray characteristics is more physically meaningful because they reflect the statistical distribution of droplets within the spray plume instead of relying on an artificially interpreted “edge”, and (3) the use of moments decreases the uncertainties of the post-processed results because moments are mathematically defined and do not depend upon user-adjustments/interpretations.

Journal

Experiments in FluidsSpringer Journals

Published: Jan 20, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off