A Molecular Genetic Study of Hybridization in Four Species of Ground Squirrels (Spermophilus: Rodentia, Sciuridae)

A Molecular Genetic Study of Hybridization in Four Species of Ground Squirrels (Spermophilus:... Four species of ground squirrel—yellow (Spermophilus fulvus), russet (S. major), small (S. pygmaeus), and spotted (S. suslicus)—occur in the Volga region. Between S. major and S. pigmaeus, S. major and S. fulvus, and S. major and S. suslicus, sporadic hybridization was reported. Using sequencing and restriction analysis, we have examined the mtDNA C region in 13 yellow, 60 russet, 61 small, 45 spotted ground squirrels, and 9 phenotypic hybrids between these species. It was shown that 43% of S. major individuals had “alien” mitotypes typical of S. fulvus and S. pygmaeus. Alien mitotypes occurred both within and outside sympatric zones. No alien mitotypes were found in 119 animals of the other three species, which suggests that only one parental species (S. major) predominantly participates in backcrosses. Phenotypic hybrids S. fulvus × S. major and S. major × S. pygmaeus) were reliably identified using RAPD–PCR of nuclear DNA. However, we could find no significant traces of hybridization in S. major with alien mitotypes. Analysis of p53 pseudogenes of S. major and S. fulvus that were for the first time described in the present study produced similar results: 59 out of 60 individuals of S. major (including S. major with S. fulvus mitotypes) had only the pseudogene variant specific for S. major. This situation is possible even at low hybridization frequencies (less than 1% according to field observations and 1.4 to 2.7% according to nuclear DNA analysis) if dispersal of S. major from the sympatric zones mainly involved animals that obtained alien mtDNA via backcrossing. The prevalence of animals with alien mitotypes in some S. major populations can be explained by the founder effect. Further studies based on large samples are required for clarifying the discrepancies between mitochondrial and nuclear DNA data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

A Molecular Genetic Study of Hybridization in Four Species of Ground Squirrels (Spermophilus: Rodentia, Sciuridae)

Loading next page...
 
/lp/springer_journal/a-molecular-genetic-study-of-hybridization-in-four-species-of-ground-0Pybb7X9e8
Publisher
Springer Journals
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Biomedicine; Human Genetics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1023/A:1016395722664
Publisher site
See Article on Publisher Site

Abstract

Four species of ground squirrel—yellow (Spermophilus fulvus), russet (S. major), small (S. pygmaeus), and spotted (S. suslicus)—occur in the Volga region. Between S. major and S. pigmaeus, S. major and S. fulvus, and S. major and S. suslicus, sporadic hybridization was reported. Using sequencing and restriction analysis, we have examined the mtDNA C region in 13 yellow, 60 russet, 61 small, 45 spotted ground squirrels, and 9 phenotypic hybrids between these species. It was shown that 43% of S. major individuals had “alien” mitotypes typical of S. fulvus and S. pygmaeus. Alien mitotypes occurred both within and outside sympatric zones. No alien mitotypes were found in 119 animals of the other three species, which suggests that only one parental species (S. major) predominantly participates in backcrosses. Phenotypic hybrids S. fulvus × S. major and S. major × S. pygmaeus) were reliably identified using RAPD–PCR of nuclear DNA. However, we could find no significant traces of hybridization in S. major with alien mitotypes. Analysis of p53 pseudogenes of S. major and S. fulvus that were for the first time described in the present study produced similar results: 59 out of 60 individuals of S. major (including S. major with S. fulvus mitotypes) had only the pseudogene variant specific for S. major. This situation is possible even at low hybridization frequencies (less than 1% according to field observations and 1.4 to 2.7% according to nuclear DNA analysis) if dispersal of S. major from the sympatric zones mainly involved animals that obtained alien mtDNA via backcrossing. The prevalence of animals with alien mitotypes in some S. major populations can be explained by the founder effect. Further studies based on large samples are required for clarifying the discrepancies between mitochondrial and nuclear DNA data.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off