A modern technique for preparation of zinc(II) and nickel(II) nanometric oxides using Schiff base compounds: synthesis, characterization, and antibacterial properties

A modern technique for preparation of zinc(II) and nickel(II) nanometric oxides using Schiff base... The purpose of the work reported in this paper was the preparation and characterization of Zn(II) and Ni(II) nanometric oxides by using a simple Schiff compound as precursor for complexation then thermal degradation at 600 °C. Metal complexes [Ni(L)2(Cl)2] and [Zn(L)2](NO3)2, where L is the Schiff base formed by condensation of 2-thiophenecarboxaldehyde with phenylhydrazine, were prepared and characterized by elemental analysis and by magnetic and spectroscopic measurements (infrared, Raman, X-ray powder diffraction, and scanning electron microscopy). Elemental analysis of the chelates suggests the stoichiometry is 1:2 (metal–ligand). Infrared spectra of the complexes are indicative of coordination of the nitrogen of the phenylhydrazine (–Ph–NH–) group and the sulfur atom of the thiophene ring with the central metal atom. Magnetic susceptibility data and electronic and ESR spectra suggest a distorted octahedral structure for the Ni(II) complex and tetrahedral geometry for the Zn(II) complex. The Schiff base and its metal chelates were screened for in-vitro activity against four bacteria, two Gram-positive (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Pseudomonas aeruginosa), and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to have greater antibacterial activity than the free Schiff-base chelate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

A modern technique for preparation of zinc(II) and nickel(II) nanometric oxides using Schiff base compounds: synthesis, characterization, and antibacterial properties

Loading next page...
 
/lp/springer_journal/a-modern-technique-for-preparation-of-zinc-ii-and-nickel-ii-nanometric-y2N2p0uGLf
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-013-1049-8
Publisher site
See Article on Publisher Site

Abstract

The purpose of the work reported in this paper was the preparation and characterization of Zn(II) and Ni(II) nanometric oxides by using a simple Schiff compound as precursor for complexation then thermal degradation at 600 °C. Metal complexes [Ni(L)2(Cl)2] and [Zn(L)2](NO3)2, where L is the Schiff base formed by condensation of 2-thiophenecarboxaldehyde with phenylhydrazine, were prepared and characterized by elemental analysis and by magnetic and spectroscopic measurements (infrared, Raman, X-ray powder diffraction, and scanning electron microscopy). Elemental analysis of the chelates suggests the stoichiometry is 1:2 (metal–ligand). Infrared spectra of the complexes are indicative of coordination of the nitrogen of the phenylhydrazine (–Ph–NH–) group and the sulfur atom of the thiophene ring with the central metal atom. Magnetic susceptibility data and electronic and ESR spectra suggest a distorted octahedral structure for the Ni(II) complex and tetrahedral geometry for the Zn(II) complex. The Schiff base and its metal chelates were screened for in-vitro activity against four bacteria, two Gram-positive (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Pseudomonas aeruginosa), and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to have greater antibacterial activity than the free Schiff-base chelate.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 31, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off