A modern approach to demineralization of spicules in glass sponges (Porifera: Hexactinellida) for the purpose of extraction and examination of the protein matrix

A modern approach to demineralization of spicules in glass sponges (Porifera: Hexactinellida) for... Glass sponges of the class Hexactinellida are a group of the most ancient multicellular animals, whose fossil remnants from the early Proterozoic have been registered. In order to demineralize the skeletal structures of the glass sponge Hyalonema sieboldi, we have used for the first time a strategy of slow leaching of the silicon-bearing component, based on the usage of alkaline solutions of sodium hydroxide, sodium dodecyl sulfate, and an anionic biosurfactant of a rhamnolipid nature. The obtained data unequivocally corroborate the presence of a fibrillar protein matrix functioning as a basis for silicon biomineralization in the basal spicules of H. sieboldi. Also, it has been found for the first time that the protein matrix is constructed of a collagenous protein. The technical approach proposed here might appear important for the study of the structural organization of skeletons in other silicon-bearing animals and, in an applied aspect, to work out new biomaterials for implantology and biocomposites, in order to use the latter as bioactive additives. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Marine Biology Springer Journals

A modern approach to demineralization of spicules in glass sponges (Porifera: Hexactinellida) for the purpose of extraction and examination of the protein matrix

Loading next page...
 
/lp/springer_journal/a-modern-approach-to-demineralization-of-spicules-in-glass-sponges-0gSysg0yub
Publisher
Springer Journals
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Life Sciences; Freshwater & Marine Ecology
ISSN
1063-0740
eISSN
1608-3377
D.O.I.
10.1134/S1063074006030060
Publisher site
See Article on Publisher Site

Abstract

Glass sponges of the class Hexactinellida are a group of the most ancient multicellular animals, whose fossil remnants from the early Proterozoic have been registered. In order to demineralize the skeletal structures of the glass sponge Hyalonema sieboldi, we have used for the first time a strategy of slow leaching of the silicon-bearing component, based on the usage of alkaline solutions of sodium hydroxide, sodium dodecyl sulfate, and an anionic biosurfactant of a rhamnolipid nature. The obtained data unequivocally corroborate the presence of a fibrillar protein matrix functioning as a basis for silicon biomineralization in the basal spicules of H. sieboldi. Also, it has been found for the first time that the protein matrix is constructed of a collagenous protein. The technical approach proposed here might appear important for the study of the structural organization of skeletons in other silicon-bearing animals and, in an applied aspect, to work out new biomaterials for implantology and biocomposites, in order to use the latter as bioactive additives.

Journal

Russian Journal of Marine BiologySpringer Journals

Published: Jul 5, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off