A modeling understanding on the phosphorous removal performances of A2O and reversed A2O processes in a full-scale wastewater treatment plant

A modeling understanding on the phosphorous removal performances of A2O and reversed A2O... Reversed A2O process (anoxic-anaerobic-aerobic) and conventional A2O process (anaerobic-anoxic-aerobic) are widely used in many wastewater treatment plants (WWTPs) in Asia. However, at present, there are still no consistent results to figure out which process has better total phosphorous (TP) removal performance and the mechanism for this difference was not clear yet. In this study, the treatment performances of both processes were compared in the same full-scale WWTP and the TP removal dynamics was analyzed by a modeling method. The treatment performance of full-scale WWTP showed the TP removal efficiency of the reversed A2O process was more efficient than in the conventional A2O process. The modeling results further reveal that the TP removal depends highly on the concentration and composition of influent COD. It had more efficient TP removal than the conventional A2O process only under conditions of sufficient influent COD and high fermentation products content. This study may lay a foundation for appropriate selection and optimization of treatment processes to suit practical wastewater properties. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

A modeling understanding on the phosphorous removal performances of A2O and reversed A2O processes in a full-scale wastewater treatment plant

Loading next page...
 
/lp/springer_journal/a-modeling-understanding-on-the-phosphorous-removal-performances-of-IaJEhMkYme
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-2317-3
Publisher site
See Article on Publisher Site

Abstract

Reversed A2O process (anoxic-anaerobic-aerobic) and conventional A2O process (anaerobic-anoxic-aerobic) are widely used in many wastewater treatment plants (WWTPs) in Asia. However, at present, there are still no consistent results to figure out which process has better total phosphorous (TP) removal performance and the mechanism for this difference was not clear yet. In this study, the treatment performances of both processes were compared in the same full-scale WWTP and the TP removal dynamics was analyzed by a modeling method. The treatment performance of full-scale WWTP showed the TP removal efficiency of the reversed A2O process was more efficient than in the conventional A2O process. The modeling results further reveal that the TP removal depends highly on the concentration and composition of influent COD. It had more efficient TP removal than the conventional A2O process only under conditions of sufficient influent COD and high fermentation products content. This study may lay a foundation for appropriate selection and optimization of treatment processes to suit practical wastewater properties.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off