A model with leaf area index and apple size parameters for 2.4GHz radio propagation in apple orchards

A model with leaf area index and apple size parameters for 2.4GHz radio propagation in apple... Wireless sensor networks (WSN) are a very promising technology in agriculture. Application of WSN in apple orchards could improve the data collection and precision farming level of the Chinese apple planting industry. WSN nodes communicate with each other via wireless signals. Prior knowledge of coverage range and attenuation speed is necessary for WSN deployment and application. Most of the existing empirical propagation models do not contain environmental parameters. However, leaf density and apple size change with time in apple orchards from spring to winter. An empirical model was created through a large number of measurements. Two parameters related to the environment were considered: the leaf area index and the apple size. Validation results showed that most of the determination coefficients (R2) were larger than 0.9 and most RMSE values were smaller than 5. The new model was suitable for estimating the path loss in apple orchards. Simulation experiments were conducted to evaluate the performance of the new model on energy conservation in the WSN application. Simulation results indicated that energy consumption could be reduced by 82, 45, and 39 % when the antenna height was 1, 2 and 3 m respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A model with leaf area index and apple size parameters for 2.4GHz radio propagation in apple orchards

Loading next page...
 
/lp/springer_journal/a-model-with-leaf-area-index-and-apple-size-parameters-for-2-4ghz-9LHcM0CFy1
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-014-9369-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial