A model with leaf area index and apple size parameters for 2.4GHz radio propagation in apple orchards

A model with leaf area index and apple size parameters for 2.4GHz radio propagation in apple... Wireless sensor networks (WSN) are a very promising technology in agriculture. Application of WSN in apple orchards could improve the data collection and precision farming level of the Chinese apple planting industry. WSN nodes communicate with each other via wireless signals. Prior knowledge of coverage range and attenuation speed is necessary for WSN deployment and application. Most of the existing empirical propagation models do not contain environmental parameters. However, leaf density and apple size change with time in apple orchards from spring to winter. An empirical model was created through a large number of measurements. Two parameters related to the environment were considered: the leaf area index and the apple size. Validation results showed that most of the determination coefficients (R2) were larger than 0.9 and most RMSE values were smaller than 5. The new model was suitable for estimating the path loss in apple orchards. Simulation experiments were conducted to evaluate the performance of the new model on energy conservation in the WSN application. Simulation results indicated that energy consumption could be reduced by 82, 45, and 39 % when the antenna height was 1, 2 and 3 m respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

A model with leaf area index and apple size parameters for 2.4GHz radio propagation in apple orchards

Loading next page...
 
/lp/springer_journal/a-model-with-leaf-area-index-and-apple-size-parameters-for-2-4ghz-9LHcM0CFy1
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-014-9369-2
Publisher site
See Article on Publisher Site

Abstract

Wireless sensor networks (WSN) are a very promising technology in agriculture. Application of WSN in apple orchards could improve the data collection and precision farming level of the Chinese apple planting industry. WSN nodes communicate with each other via wireless signals. Prior knowledge of coverage range and attenuation speed is necessary for WSN deployment and application. Most of the existing empirical propagation models do not contain environmental parameters. However, leaf density and apple size change with time in apple orchards from spring to winter. An empirical model was created through a large number of measurements. Two parameters related to the environment were considered: the leaf area index and the apple size. Validation results showed that most of the determination coefficients (R2) were larger than 0.9 and most RMSE values were smaller than 5. The new model was suitable for estimating the path loss in apple orchards. Simulation experiments were conducted to evaluate the performance of the new model on energy conservation in the WSN application. Simulation results indicated that energy consumption could be reduced by 82, 45, and 39 % when the antenna height was 1, 2 and 3 m respectively.

Journal

Precision AgricultureSpringer Journals

Published: Sep 13, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off