Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

A model on dual string drilling: on the road to deep waters

A model on dual string drilling: on the road to deep waters As the offshore market is facing the deepwater production challenges, the Oil and Gas Industry is investing in new technologies to bring down costs needed to effectively exploit reservoirs. Therefore, dual string drilling (DSD) can eliminate the marine riser which would result in exploring oil fields in deep and ultra-deepwater economically. In order for controlling fluid contact with a borehole wall during drilling operations include introducing an outer pipe into a borehole and positioning an inner pipe within the outer pipe axially. The method may further include circulating a drilling fluid to a drill bit using inner pipe and the annulus between the inner pipe and outer pipe. The drilling fluid may be separated from the control fluid by using an annular isolator. The results showed that with DSD approach a lot of time will be saved in order to circulate the kick out of the well. Apart from riserless drilling, DSD has an efficient cutting removal capacity, better annular clearance, elimination of differential sticking, better well stability, better well control parameters, reduction of torque and drag, avoid the dynamic equivalent circulating density gradient, and better extended reach drilling. The novelty of the new dynamics model is in the ability to solve narrow operational margin between pore pressure and fracture pressure as we move into deeper waters. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Modeling Earth Systems and Environment Springer Journals

A model on dual string drilling: on the road to deep waters

Loading next page...
 
/lp/springer_journal/a-model-on-dual-string-drilling-on-the-road-to-deep-waters-SNSlWx0EzV

References (25)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Earth Sciences; Earth System Sciences; Math. Appl. in Environmental Science; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Mathematical Applications in the Physical Sciences; Ecosystems; Environment, general
ISSN
2363-6203
eISSN
2363-6211
DOI
10.1007/s40808-018-0457-6
Publisher site
See Article on Publisher Site

Abstract

As the offshore market is facing the deepwater production challenges, the Oil and Gas Industry is investing in new technologies to bring down costs needed to effectively exploit reservoirs. Therefore, dual string drilling (DSD) can eliminate the marine riser which would result in exploring oil fields in deep and ultra-deepwater economically. In order for controlling fluid contact with a borehole wall during drilling operations include introducing an outer pipe into a borehole and positioning an inner pipe within the outer pipe axially. The method may further include circulating a drilling fluid to a drill bit using inner pipe and the annulus between the inner pipe and outer pipe. The drilling fluid may be separated from the control fluid by using an annular isolator. The results showed that with DSD approach a lot of time will be saved in order to circulate the kick out of the well. Apart from riserless drilling, DSD has an efficient cutting removal capacity, better annular clearance, elimination of differential sticking, better well stability, better well control parameters, reduction of torque and drag, avoid the dynamic equivalent circulating density gradient, and better extended reach drilling. The novelty of the new dynamics model is in the ability to solve narrow operational margin between pore pressure and fracture pressure as we move into deeper waters.

Journal

Modeling Earth Systems and EnvironmentSpringer Journals

Published: Apr 12, 2018

There are no references for this article.