A model of the dynamics of the ecosystem of the Sea of Azov

A model of the dynamics of the ecosystem of the Sea of Azov We use many-year archival observations of hydrologic and hydrobiologic state of the Sea of Azov for the identification of the structure of a model of its ecosystem. The ecosystem model, supplemented with expert estimates of bioresource consumption (fish reserve), contamination level, and possible ecologic fines for violation of the sea natural state, is formalized by the method of system dynamics. Hereat, the major part of influence functions is found in terms of observational data with application of self-organization algorithms. We also present the results of simulated experiments with the model of the ecosystem, which enable us to analyse scenarios of its behaviour under the influence of various external factors (wind, river discharge, water exchange with the Black Sea, etc.). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

A model of the dynamics of the ecosystem of the Sea of Azov

Loading next page...
 
/lp/springer_journal/a-model-of-the-dynamics-of-the-ecosystem-of-the-sea-of-azov-6h05zF6hub
Publisher
Springer Journals
Copyright
Copyright © 2001 by VSP
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/BF02509230
Publisher site
See Article on Publisher Site

Abstract

We use many-year archival observations of hydrologic and hydrobiologic state of the Sea of Azov for the identification of the structure of a model of its ecosystem. The ecosystem model, supplemented with expert estimates of bioresource consumption (fish reserve), contamination level, and possible ecologic fines for violation of the sea natural state, is formalized by the method of system dynamics. Hereat, the major part of influence functions is found in terms of observational data with application of self-organization algorithms. We also present the results of simulated experiments with the model of the ecosystem, which enable us to analyse scenarios of its behaviour under the influence of various external factors (wind, river discharge, water exchange with the Black Sea, etc.).

Journal

Physical OceanographySpringer Journals

Published: Sep 18, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off