A model for the evolution of polyubiquitin genes from the study of Arabidopsis thaliana ecotypes

A model for the evolution of polyubiquitin genes from the study of Arabidopsis thaliana ecotypes Polyubiquitin genes encode the highly conserved 76-amino acid protein ubiquitin that is covalently attached to substrate proteins targeting most for degradation. Polyubiquitin genes are characterized by the presence of tandem repeats of the 228 bp that encode a ubiquitin monomer. Five polyubiquitin genes UBQ3, UBQ4, UBQ10, UBQ11, and UBQ14, previously isolated from Arabidopsis thaliana ecotype Columbia [10] encode identical mature ubiquitin proteins, but differ in synonymous substitutions, nature of amino acids terminating the open reading frame, and in the number of ubiquitin repeats. The presence of these five genes in nine other Arabidopsis ecotypes was verified by polymerase chain reaction (PCR). Size differences in UBQ3 and UBQ11 amplified products from several ecotypes were observed, suggesting that alleles differ in ubiquitin repeat number. DNA sequence of UBQ11 alleles from each size class (ecotypes Be-0, Ler, and Rld-0) verified that PCR product size differences resulted from changes in the number of ubiquitin repeats. Nucleotide sequence between two UBQ11 alleles containing the same number of repeats was identical. Transcript size differences for UBQ3 and UBQ11 mRNAs between ecotypes Columbia and Landsberg indicated that repeat number changes did not inactivate these genes. Nucleotide sequence comparisons between UBQ11 repeats from different ecotypes suggest that first repeats are related to each other and last repeats are related to each other. We hypothesize that changes in UBQ11 ubiquitin repeat number occurred via the contraction and/or expansion of specific internal repeats or portions thereof by misalignment of alleles and recombination, most likely via unequal crossing-over events. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A model for the evolution of polyubiquitin genes from the study of Arabidopsis thaliana ecotypes

Loading next page...
 
/lp/springer_journal/a-model-for-the-evolution-of-polyubiquitin-genes-from-the-study-of-9OMiHFy5Cf
Publisher
Springer Journals
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005848828368
Publisher site
See Article on Publisher Site

Abstract

Polyubiquitin genes encode the highly conserved 76-amino acid protein ubiquitin that is covalently attached to substrate proteins targeting most for degradation. Polyubiquitin genes are characterized by the presence of tandem repeats of the 228 bp that encode a ubiquitin monomer. Five polyubiquitin genes UBQ3, UBQ4, UBQ10, UBQ11, and UBQ14, previously isolated from Arabidopsis thaliana ecotype Columbia [10] encode identical mature ubiquitin proteins, but differ in synonymous substitutions, nature of amino acids terminating the open reading frame, and in the number of ubiquitin repeats. The presence of these five genes in nine other Arabidopsis ecotypes was verified by polymerase chain reaction (PCR). Size differences in UBQ3 and UBQ11 amplified products from several ecotypes were observed, suggesting that alleles differ in ubiquitin repeat number. DNA sequence of UBQ11 alleles from each size class (ecotypes Be-0, Ler, and Rld-0) verified that PCR product size differences resulted from changes in the number of ubiquitin repeats. Nucleotide sequence between two UBQ11 alleles containing the same number of repeats was identical. Transcript size differences for UBQ3 and UBQ11 mRNAs between ecotypes Columbia and Landsberg indicated that repeat number changes did not inactivate these genes. Nucleotide sequence comparisons between UBQ11 repeats from different ecotypes suggest that first repeats are related to each other and last repeats are related to each other. We hypothesize that changes in UBQ11 ubiquitin repeat number occurred via the contraction and/or expansion of specific internal repeats or portions thereof by misalignment of alleles and recombination, most likely via unequal crossing-over events.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off