A mixed model to multiple harvest-location trials applied to genomic prediction in Coffea canephora

A mixed model to multiple harvest-location trials applied to genomic prediction in Coffea canephora Genomic selection (GS) has been studied in several crops to increase the rates of genetic gain and reduce the length of breeding cycles. Despite its relevance, there are only a modest number of reports applied to the genus Coffea. Effective implementation depends on the ability to consider genomic models, which correctly represent breeding scenario in which the species are inserted. Coffee experimentation, in general, is represented by evaluations in multiple locations and harvests to understand the interaction and predict the performance of untested genotypes. Therefore, the main objective of this study was to investigate GS models suitable for use in Coffea canephora. An expansion of traditional GBLUP was considered and genomic analysis was performed using a genotyping-by-sequencing (GBS) approach, showed good potential to be used in coffee breeding programs. Interactions were modeled using the multiplicative mixed model theory, which is commonly used in multi-environment trials (MET) analysis in perennial crops. The effectiveness of the method used was compared with other genetic models in terms of goodness-of-fit statistics and prediction accuracy. Different scenarios that mimic coffee breeding were used in the cross-validation process. The method used had the lowest AIC and BIC values and, consequently, the best fit. In terms of predictive ability, the incorporation of the MET modeling showed higher accuracy (on average 10–17% higher) and lower prediction errors than traditional GBLUP. The results may be used as basis for additional studies into the genus Coffea and can be expanded for similar perennial crops. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tree Genetics & Genomes Springer Journals

A mixed model to multiple harvest-location trials applied to genomic prediction in Coffea canephora

Loading next page...
 
/lp/springer_journal/a-mixed-model-to-multiple-harvest-location-trials-applied-to-genomic-0KEn064tF1
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Forestry; Plant Genetics and Genomics; Plant Breeding/Biotechnology; Tree Biology; Biotechnology
ISSN
1614-2942
eISSN
1614-2950
D.O.I.
10.1007/s11295-017-1171-7
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial