A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits

A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness,... Our knowledge of the genetic factors affecting obesity is increasing, but information about the individual gene effects remains limited in humans as well as in animal models. The melanocortin-4 receptor gene (MC4R) has been implicated in the regulation of feeding behavior and body weight in humans and mice. We have studied MC4R as a candidate gene for the control of economically important growth and performance traits in the pig. A missense mutation was identified in a region highly conserved among melanocortin receptor (MCR) genes. To determine whether there was an association of this MC4R polymorphism with phenotypic variation, we tested the mutation in a large number of individual animals from several different pig lines. Analyses of growth and performance test records showed significant associations of MC4R genotypes with backfat and growth rate in a number of lines as well as feed intake overall. It is probable that the variant amino acid residue of the MC4R mutation (or a closely linked mutation) causes a significant change of the MC4R function. These results support the functional significance of a pig MC4R missense mutation and suggest that comparative genomics based on model species may be equally important for application to farm animals as they are for human medicine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits

Loading next page...
 
/lp/springer_journal/a-missense-variant-of-the-porcine-melanocortin-4-receptor-mc4r-gene-is-EJr00J7fWs
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010025
Publisher site
See Article on Publisher Site

Abstract

Our knowledge of the genetic factors affecting obesity is increasing, but information about the individual gene effects remains limited in humans as well as in animal models. The melanocortin-4 receptor gene (MC4R) has been implicated in the regulation of feeding behavior and body weight in humans and mice. We have studied MC4R as a candidate gene for the control of economically important growth and performance traits in the pig. A missense mutation was identified in a region highly conserved among melanocortin receptor (MCR) genes. To determine whether there was an association of this MC4R polymorphism with phenotypic variation, we tested the mutation in a large number of individual animals from several different pig lines. Analyses of growth and performance test records showed significant associations of MC4R genotypes with backfat and growth rate in a number of lines as well as feed intake overall. It is probable that the variant amino acid residue of the MC4R mutation (or a closely linked mutation) causes a significant change of the MC4R function. These results support the functional significance of a pig MC4R missense mutation and suggest that comparative genomics based on model species may be equally important for application to farm animals as they are for human medicine.

Journal

Mammalian GenomeSpringer Journals

Published: Feb 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off