A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice

A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma... Cellulose synthase (CESA) is a critical catalytic subunit of the cellulose synthase complex responsible for glucan chain elongation. Our knowledge about how CESA functions is still very limited. Here, we report the functional characterization of a rice mutant, brittle culm11, that shows growth retardation and dramatically reduced plant strength. Map-based cloning revealed that all the mutant phenotypes result from a missense mutation in OsCESA4 (G858R), a highly conserved residue at the end of the fifth transmembrane domain. The aberrant secondary cell wall of the mutant plants is attributed to significantly reduced cellulose content, abnormal secondary wall structure of sclerenchyma cells, and overall altered wall composition, as detected by chemical analyses and immunochemical staining. Importantly, we have found that this point mutation decreases the abundance of OsCESA4 in the plasma membrane, probably due to a defect in the process of CESA complex secretion. The data from our biochemical, genetic, and pharmacological analyses indicate that this residue is critical for maintaining the normal level of CESA proteins in the plasma membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice

Loading next page...
 
/lp/springer_journal/a-missense-mutation-in-the-transmembrane-domain-of-cesa4-affects-byda9xCiPD
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-009-9536-4
Publisher site
See Article on Publisher Site

Abstract

Cellulose synthase (CESA) is a critical catalytic subunit of the cellulose synthase complex responsible for glucan chain elongation. Our knowledge about how CESA functions is still very limited. Here, we report the functional characterization of a rice mutant, brittle culm11, that shows growth retardation and dramatically reduced plant strength. Map-based cloning revealed that all the mutant phenotypes result from a missense mutation in OsCESA4 (G858R), a highly conserved residue at the end of the fifth transmembrane domain. The aberrant secondary cell wall of the mutant plants is attributed to significantly reduced cellulose content, abnormal secondary wall structure of sclerenchyma cells, and overall altered wall composition, as detected by chemical analyses and immunochemical staining. Importantly, we have found that this point mutation decreases the abundance of OsCESA4 in the plasma membrane, probably due to a defect in the process of CESA complex secretion. The data from our biochemical, genetic, and pharmacological analyses indicate that this residue is critical for maintaining the normal level of CESA proteins in the plasma membrane.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 21, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off