A minimum distortion transmission scheme under combined effects of chromatic dispersion and SPM based on optical time-domain fractional Fourier transformation

A minimum distortion transmission scheme under combined effects of chromatic dispersion and SPM... In this paper, an optical time-domain fractional Fourier transformation (FRFT) system is proposed to achieve the minimum distortion transmission under combined effects of chromatic dispersion and self-phase modulation (SPM). In the new method, the pulses operated as FRFT will propagate in a new domain, in which the waveform in time domain will keep nearly unchanged through the transmission. The novel method achieves a 400 km optical transmission for an optical pulse with the full width at the 1/e point of peak power of 80 ps without any dispersion compensation and the pulse offers a nice performance with negligible nonlinear distortion. Compared with the soliton communication, this scheme shows more advantages on linear and nonlinear distortions without strict restriction to input pulses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A minimum distortion transmission scheme under combined effects of chromatic dispersion and SPM based on optical time-domain fractional Fourier transformation

Loading next page...
 
/lp/springer_journal/a-minimum-distortion-transmission-scheme-under-combined-effects-of-wAoJhCY9Ak
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0262-2
Publisher site
See Article on Publisher Site

Abstract

In this paper, an optical time-domain fractional Fourier transformation (FRFT) system is proposed to achieve the minimum distortion transmission under combined effects of chromatic dispersion and self-phase modulation (SPM). In the new method, the pulses operated as FRFT will propagate in a new domain, in which the waveform in time domain will keep nearly unchanged through the transmission. The novel method achieves a 400 km optical transmission for an optical pulse with the full width at the 1/e point of peak power of 80 ps without any dispersion compensation and the pulse offers a nice performance with negligible nonlinear distortion. Compared with the soliton communication, this scheme shows more advantages on linear and nonlinear distortions without strict restriction to input pulses.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 15, 2010

References

  • A combined regular-logarithmic perturbation method for signal-noise interaction in amplified optical systems
    Secondini, M.; Forestieri, E.; Menyuk, C.R.
  • Impact of self-phase modulation on in-band crosstalk penalties
    Meleiro, R.; Buxens, A.; Fonseca, D.; Castro, J.; Andre, P.; Monteiro, P.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off