A methodology to design the link cost functions for impairment aware routing algorithms in optical networks

A methodology to design the link cost functions for impairment aware routing algorithms in... We propose a methodology to design the link cost function and, consequently, a systematic form to design a RWA algorithm. We call this methodology link cost function design (LCFD) and it consists of four steps: The choice of the link cost function input variables, the expansion of the cost function in terms of a series, the selection of an overall network performance indicator as the optimization target, and finally, the execution of an optimization process to find the series coefficients that optimize the network performance indicator based on off-line network simulations. The optimization process is performed by a computational intelligence technique, the particle swarm optimization. The proposed methodology (LCFD) is used to design an adaptive IA-RWA algorithm, which we call Power Series Routing (PSR). The effectiveness of both methodology and IA-RWA algorithm is investigated. The PSR is compared with other algorithms found in the literature by means of computational simulations and our proposal presented lower blocking probabilities with shorter computation time. Furthermore, we investigate the sensitivity and the ability of the proposed PSR to adapt itself to topological changes in the network due to both link/node addition/failure. We also investigate the behavior of the PSR in a scenario where the traffic load distribution is randomly chosen (non-uniform traffic), and we compared it to other three routing algorithms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

A methodology to design the link cost functions for impairment aware routing algorithms in optical networks

Loading next page...
Springer US
Copyright © 2011 by Springer Science+Business Media, LLC
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial